diphenylcarbamoyl chloride

2024-05-10by admin

Diphenylcarbamoyl chloride structural formula

Structural formula

Business number 01T9
Molecular formula C13H10ClNO
Molecular weight 231.68
label

Diphenylcarbamocarbon chloride,

dimethylcarbamoyl chloride,

N,N-Diphenylchloroformamide,

diphenylcarbamide chloride,

diphenylcarbamoyl chloride,

Chloroformic acid diphenylamide,

DPC-Cl

Numbering system

CAS number:83-01-2

MDL number:MFCD00000633

EINECS number:201-450-2

RTECS number:EY5065000

BRN number:515312

PubChem number:24866819

Physical property data

1. Appearance: white powder

2. Density (g/mL, 25/4℃): Undetermined

3. Relative vapor density (g/mL, air =1): Uncertain

4. Melting point (ºC): 85

5. Boiling point (ºC, normal pressure): Uncertain

6. Boiling point (ºC, 5.2kPa): Uncertain

7. Refractive index: Uncertain

8. Flash point (ºC): Uncertain

9. Ratio Optical rotation (º): Uncertain

10. Autoignition point or ignition temperature (ºC): Uncertain

11. Vapor pressure (kPa, 25ºC): Uncertain

p>

12. Saturated vapor pressure (kPa, 60ºC): Uncertain

13. Heat of combustion (KJ/mol): Uncertain

14. Critical temperature (ºC ): Uncertain

15. Critical pressure (KPa): Uncertain

16. Log value of oil-water (octanol/water) partition coefficient: Uncertain

17. Upper explosion limit (%, V/V): Uncertain

18. Lower explosion limit (%, V/V): Uncertain

19. Solubility: Dissolved in most common solvents.

Toxicological data

None yet

Ecological data

None yet

Molecular structure data

1. Molar refractive index: 65.21

2. Molar volume (cm3/mol): 182.5

3. Isotonic specific volume (90.2K): 487.2

4. Surface tension (dyne/cm): 50.8

5. Polarizability (10-24cm3): 25.85

Compute chemical data

1. Hydrophobic parameter calculation reference value (XlogP): 3.8

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 1

4. Number of rotatable chemical bonds: 2

5. Topological molecular polar surface area (TPSA): 20.3

6. Number of heavy atoms: 16

7. Surface charge: 0

8. Complexity: 214

9. Number of isotope atoms: 0

10. Determine the number of atomic stereocenters : 0

11. Uncertain number of atomic stereocenters: 0

12. Determined number of chemical bond stereocenters: 0

13. Uncertain chemical bond formation Number of structural centers:0

14. Number of covalent bond units: 1

Properties and stability

It is hygroscopic and should be kept away from strong alkalis and strong oxidants; it is corrosive; unlike dimethylamino, diethylamino, and methylphenylcarbamoyl chloride, DPC-Cl does not have carcinogenic properties.

Storage method

Should be sealed and stored in a cool, dry place

Synthesis method

None yet

Purpose

1. Phenolic reagents. Organic Synthesis.

2. Diphenylcarbamoyl chloride (DPC-Cl) is a commonly used acylating reagent that can be used for Friedel-Crafts acylation; it can acylate amines, amino acids, thiols, phenols, and carboxylic acids Salt, etc.; can be used as a protective group during oligonucleotide synthesis, and the protective group can be removed under the action of concentrated ammonia-methanol or NaOH-methyl(ethanol) alcohol.

Introduction of carboxyl group Under the catalysis of AlCl3, DPC-Cl can introduce a carboxyl group on the aromatic ring. Alkyl or alkoxy substituted aromatic rings are susceptible to reaction. The product diphenylamide is hydrolyzed with alkali and then acidified to obtain carboxylic acid (formula 1)[1].

Reaction with amino groups DPC-Cl easily reacts with primary (formula 2) [2], secondary fatty amine (formula 3) [3] etc. [ 4~7].

Reaction with sulfhydryl group Under alkaline conditions (such as NaHCO3), DPC-Cl can react with thiols in ethanol solution (Formula 4)[8].

Used as oligomeric Protective groups during nucleotide synthesisWhen synthesizing oligonucleotides, the bases of guanine nucleosides are prone to side reactions and need to be protected. DPC-Cl can protect the enol isoforms of guanine bases. The conformation is protected by acylation. This method plays an important role in the synthesis of nucleoside compounds with guanine bases and those similar to guanine bases [9~12] ( Formula 5).

With double bonds Reaction of alcohol compounds DPC-Cl can undergo esterification reaction with alcohol compounds containing double bonds (Formula 6)[13].

With azide Reaction of sodium DPC-Cl can react with sodium azide to generate the corresponding azide compound (Formula 7)[14].

extended-reading:https://www.bdmaee.net/potassium-neodecanoate-2/
extended-reading:https://www.bdmaee.net/n-dimethylaminopropyldiisopropanolamine/
extended-reading:https://www.cyclohexylamine.net/dibutyltin-oxide-cas-818-08-6/
extended-reading:https://www.bdmaee.net/polyurethane-reaction-inhibitor-y2300-polyurethane-reaction-inhibitor-reaction-inhibitor-y2300/
extended-reading:https://www.bdmaee.net/dabco-k2097-catalyst-cas127-08-2-evonik-germany/
extended-reading:https://www.newtopchem.com/archives/44959
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/TMR-4–TMR-4-trimer-catalyst-TMR-4.pdf
extended-reading:https://www.bdmaee.net/dimethyltin-oxide/
extended-reading:https://www.bdmaee.net/n-dimethylaminopropyl-diisopropanolamine-cas-63469-23-8-pc-cat-np10/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/33-11.jpg

admin