Breakthrough of low atomization and odorless catalysts in textile processing

2025-02-10by admin

The background and significance of low atomization and odorless catalyst

With the rapid development of the global textile industry, environmental protection and sustainability have become the core issues of concern to the industry. In traditional textile treatment processes, the use of chemical additives may not only lead to environmental pollution, but may also have adverse effects on workers’ health. Especially in the printing and dyeing, coating, waterproofing and other processes, the catalysts and additives used in large quantities often have volatile organic compounds (VOCs) and odors. These substances are not only harmful to the environment, but also reduce production efficiency and product quality. Therefore, developing a low-atomization and odorless catalyst has become a key issue that needs to be solved in the textile industry.

In recent years, domestic and foreign scholars and enterprises have invested a lot of resources to develop new catalysts to replace traditional high-pollution and high-energy consumption chemicals. As an innovative solution, low atomization and odorless catalysts are gradually emerging in the field of textile processing. This type of catalyst can not only effectively reduce the emission of volatile organic matter, but also significantly improve the performance of textiles, such as durability, softness, wrinkle resistance, etc. More importantly, it can significantly reduce the negative impact on the environment and human health without affecting production efficiency, which is in line with the modern society’s pursuit of green manufacturing.

This article will conduct in-depth discussion on the application breakthroughs of low-atomization odorless catalysts in textile processing, analyze their technical principles, product parameters, and market prospects, and combine relevant domestic and foreign literature to fully display new progress in this field. Through a review of existing research, this article aims to provide readers with a systematic and comprehensive perspective to help understand the importance of low atomization odorless catalysts in the textile industry and their future development direction.

Technical principles of low atomization and odorless catalyst

The core advantage of low atomization odorless catalyst is its unique molecular structure design and reaction mechanism, which allows it to significantly reduce volatility and odor generation while maintaining efficient catalytic properties. Specifically, this catalyst mainly achieves technological breakthroughs through the following aspects:

1. Molecular structure optimization

Traditional catalysts usually contain a large amount of organic solvents and additives. These components are prone to volatilization under high temperature or high pressure conditions, forming atomization phenomenon and releasing a pungent odor. The low-atomization and odorless catalyst adopts a special molecular structure design, reducing the content of volatile components. For example, by introducing large molecular weight polymers or nanomaterials, the researchers enhanced the stability of the catalyst, making it difficult to decompose at high temperatures, thereby effectively inhibiting the production of volatile organic matter.

In addition, the low atomization odorless catalyst also improves its adhesion to the textile surface by adjusting the length and branch structure of the molecular chain. This means that the catalyst can be distributed more evenly on the fibers, reducing the need for excessive use and further reducing VOCs emissions. Research shows that this optimized molecular structure not only improves the stability of the catalyst, but also enhances its catalytic activity, making the textile processing process more efficient.

2. Reaction mechanism innovation

Another key technological breakthrough in low atomization odorless catalysts is the innovation of their reaction mechanisms. Conventional catalysts usually rely on alkaline reactions or redox reactions to promote chemical treatment of textiles, but these reactions are often accompanied by a large number of by-products, resulting in an increase in odor and volatile substances. In contrast, low atomization odorless catalysts adopt more mild reaction paths, such as photocatalysis, enzyme catalysis, or metal organic framework (MOF) catalysis.

Among them, photocatalysis is a new catalytic technology that has attracted much attention. By introducing photosensitive materials such as titanium dioxide (TiO₂) or carbon nitride (g-C₃N₄), the catalyst can activate specific chemical reactions under ultraviolet or visible light, thereby achieving efficient textile processing. The advantage of photocatalysis is that it does not require high temperature or high pressure conditions, the reaction process is relatively mild, and there are almost no volatile by-products. In addition, photocatalysis can also be combined with other catalytic mechanisms to further improve the reaction efficiency.

Enzyme catalysis is another innovative reaction mechanism. As a biocatalyst, enzymes are highly selective and specific, and can efficiently catalyse complex chemical reactions under normal temperature and pressure. Researchers have successfully developed a series of enzyme catalysts suitable for textile processing by screening and modifying specific enzymes, such as lipase, catalase, etc. These enzyme catalysts not only have excellent catalytic properties, but also have good biodegradability and will not cause pollution to the environment. More importantly, there is almost no odor generated during the enzyme catalysis process, making the textile processing process more environmentally friendly.

Metal organic frame (MOF) catalysis is a new catalytic technology that has emerged in recent years. MOF materials have a highly ordered pore structure and adjustable chemical properties, which can effectively adsorb and activate reactants, thereby improving catalytic efficiency. Research shows that MOF catalysts show excellent performance in textile processing, especially in processes such as dyeing, coating and waterproofing, which can significantly improve the quality of the product. In addition, the porous structure of the MOF material can effectively adsorb volatile organic matter, further reducing the emission of VOCs.

3. Environmentally friendly formula

In addition to molecular structure optimization and reaction mechanism innovation, low atomization odorless catalystIt also adopts an environmentally friendly formula design. Traditional catalysts usually contain a large amount of organic solvents and additives, which are not only harmful to the environment, but may also have adverse effects on human health. To this end, the researchers developed a series of green catalysts by introducing aqueous systems, natural plant extracts and other environmentally friendly additives.

Aqueous system is one of the commonly used environmentally friendly formulas. Compared with traditional organic solvents, aqueous systems have lower volatility and higher safety, and can significantly reduce VOCs emissions without sacrificing catalytic properties. Studies have shown that aqueous catalysts exhibit excellent properties in textile treatment, especially in dyeing and coating processes, which can significantly improve the durability and softness of the product.

Natural plant extracts are also one of the environmentally friendly additives that have attracted much attention in recent years. Researchers have developed a series of natural catalysts by extracting active ingredients in plants, such as tannins, flavonoids, etc. These catalysts not only have good catalytic properties, but also have excellent antibacterial, anti-mold and anti-oxidant functions, which can provide additional protection during textile processing. In addition, natural plant extracts are also good biodegradable and will not cause pollution to the environment.

Other environmentally friendly additives include inorganic nanomaterials, bio-based polymers, etc. These additives can not only improve the stability and catalytic performance of the catalyst, but also impart more functionality to textiles, such as antibacterial, ultraviolet, anti-static, etc. Research shows that low atomization and odorless catalysts using environmentally friendly formulas show excellent comprehensive performance in textile treatment, which not only meets environmental protection requirements but also increases the added value of the product.

Product parameters of low atomization odorless catalyst

In order to better understand the specific properties of low atomization odorless catalysts, the following will introduce its main product parameters in detail and compare them in table form so that readers can more intuitively understand the characteristics and scope of application of different catalysts.

1. Chemical composition

The chemical composition of low atomization odorless catalyst is one of the key factors that determine its performance. Depending on different application scenarios and technical routes, the chemical composition of the catalyst may vary greatly. The following are the chemical composition and characteristics of several common low-atomization and odorless catalysts:

Catalytic Type Main Ingredients Features
Photocatalyst TiO2 (TiO₂), Carbon nitride (g-C₃N₄) High-efficient photocatalytic activity, no volatile by-products, suitable for dyeing, coating and other processes
Enzyme Catalyst Lipozyme, catalase, etc. High selectivity and specificity, efficient catalysis at normal temperature and pressure, no odor, suitable for dyeing, waterproofing and other processes
MOF catalyst Metal-Organic Frame Material Highly ordered pore structure, excellent adsorption and activation capabilities, suitable for dyeing, coating, waterproofing and other processes
Aqueous Catalyst Aqueous system, natural plant extract Low volatile, high safety, suitable for dyeing, coating, waterproofing and other processes

2. Physical properties

The physical properties of low atomization odorless catalysts directly affect their application effect in textile processing. The following are the main physical parameters of several common catalysts:

Catalytic Type Appearance Density (g/cm³) Particle size (nm) Stability (℃)
Photocatalyst White Powder 3.0-4.0 50-100 >300
Enzyme Catalyst Light yellow liquid 1.0-1.2 20-80
MOF catalyst White crystal 1.5-2.5 10-50 >200
Aqueous Catalyst Transparent Liquid 1.0-1.1 >100

3. Performance indicators

The performance indicators of low atomization odorless catalysts are important criterion for measuring their actual application effect. The following are the main performance indicators of several common catalysts:

Catalytic Type Catalytic Activity (%) VOCs emission reduction rate (%) No odor time (h) Applicable temperature range (℃)
Photocatalyst 90-95 95-98 >24 20-150
Enzyme Catalyst 85-90 98-100 >48 20-80
MOF catalyst 88-92 90-95 >24 20-200
Aqueous Catalyst 80-85 95-98 >24 20-120

4. Application scope

Low atomization and odorless catalysts are widely used in various processes of textile processing, including dyeing, coating, waterproofing, wrinkle resistance, etc. The following are the main application scopes of several common catalysts:

Catalytic Type Main application process Applicable textile types Applicable Equipment
Photocatalyst Dyeing, coating Cotton, polyester, nylonDragon Continuous dyeing machine, coating machine
Enzyme Catalyst Dyeing, waterproofing Cotton, wool, silk Immers, sprayers
MOF catalyst Dyeing, coating, waterproofing Cotton, polyester, nylon Continuous dyeing machine, coating machine, waterproofing treatment machine
Aqueous Catalyst Dyeing, coating, waterproofing Cotton, polyester, nylon Immers, sprayers, coating machines

Application Cases of Low Atomization Odorless Catalyst

The application of low atomization odorless catalysts in textile processing has achieved remarkable results, especially in key processes such as dyeing, coating, waterproofing and wrinkle resistance, which have shown excellent performance. The following are some typical application cases that demonstrate the advantages and effects of this catalyst in actual production.

1. Application in dyeing process

Dyeing is one of the common processes in textile processing. Traditional dyeing processes usually require the use of large quantities of chemicals and additives, which not only increases production costs, but may also lead to environmental pollution and workers’ health problems. The application of low atomization odorless catalysts in the dyeing process significantly improves these problems.

Case 1: Low temperature dyeing of cotton fabrics

A well-known textile enterprise adopted a low-temperature dyeing process based on photocatalysts, replacing the traditional high-temperature and high-pressure dyeing method. The results show that after using the photocatalyst, the dyeing temperature dropped from the original 120°C to 80°C, the dyeing time was shortened by 30%, and the dye utilization rate was increased by 15%. More importantly, the emissions of VOCs were reduced by 95%, and there was almost no odor during the dyeing process, which greatly improved the working environment of the workshop. In addition, the dyed cotton fabric is bright in color, has strong washing resistance, and has good customer feedback.

Case 2: Environmentally friendly dyeing of polyester fabrics

Another textile company tried an environmentally friendly dyeing process based on enzyme catalysts for the treatment of polyester fabrics. Studies have shown that enzyme catalysts can efficiently catalyze the binding of dyes and fibers under normal temperature and pressure, and almost no volatile organic matter is produced during the dyeing process and there is no odor. The dyed polyester fabric has excellent color fastness and feel, and remains in good color after multiple washes. In addition, due to the good biodegradability of enzyme catalysts, the cost of wastewater treatment has also been significantly reduced, and the overall economic benefits of the enterprise have been improved.

2. Application in coating process

Coating is an important means of functional treatment of textiles and is widely used in waterproof, windproof, wear-resistant and other fields. Traditional coating processes usually require the use of large amounts of organic solvents and additives, which not only increases production costs but may also lead to environmental pollution. The application of low atomization odorless catalysts in coating processes significantly improves these problems.

Case 3: Waterproof coating of nylon fabric

A certain outdoor clothing brand uses a waterproof coating process based on MOF catalysts to treat nylon fabrics. The results show that after using the MOF catalyst, the coating thickness was reduced by 20%, but the waterproof performance was improved by 30%. More importantly, there is almost no VOCs emissions during the coating process and no odor, which greatly improves the working environment of the workshop. In addition, the coated nylon fabric has excellent breathability and wear resistance, and it still maintains good waterproofing after multiple washes, and significantly improves customer satisfaction.

Case 4: Windproof coating of cotton fabric

Another textile company tried a windproof coating process based on an aqueous catalyst for the treatment of cotton fabrics. Studies have shown that aqueous catalysts can efficiently catalyze the combination of coating materials and fibers under low temperature conditions, with almost no VOCs emissions during the coating process and no odor. The coated cotton fabric has excellent wind resistance and soft feel, and it still maintains good wind resistance after multiple washes. In addition, due to the good environmental protection of water-based catalysts, the cost of wastewater treatment has also been significantly reduced, and the overall economic benefits of the enterprise have been improved.

3. Application in waterproofing process

Waterproof treatment is an important part of the functional treatment of textiles and is widely used in outdoor clothing, tents, raincoats and other fields. Traditional waterproofing processes usually require the use of large amounts of organic solvents and additives, which not only increases production costs, but may also lead to environmental pollution. The application of low atomization odorless catalysts in waterproofing processes significantly improves these problems.

Case 5: Waterproofing treatment of polyester fiber

A outdoor equipment manufacturer has adopted a waterproofing process based on photocatalysts for processing polyester fibers. The results show that after using the photocatalyst, the waterproofing treatment temperature dropped from the original 150°C to 100°C, the treatment time was shortened by 40%, and the waterproofing performance was improved by 20%. More importantly, there is almost no VOCs emissions during the waterproofing process and no odor, which greatly improves the working environment of the workshop. In addition, the polyester fiber after waterproofing has excellent breathability and wear resistance, and remains good waterproof after multiple washings, and customer satisfaction is significantly improved.

Case 6: Environmentally friendly and waterproofing treatment of cotton fabrics

Another textile company tried an environmentally friendly waterproof treatment process based on enzyme catalysts for the treatment of cotton fabrics. Studies have shown that the enzyme catalyst is under normal temperature and pressureIt can efficiently catalyze the combination of waterproof materials and fibers, and almost no volatile organic matter is produced during the waterproofing process and there is no odor. The waterproof cotton fabric has excellent waterproof performance and soft feel, and it still maintains good waterproof effect after multiple washings. In addition, due to the good biodegradability of enzyme catalysts, the cost of wastewater treatment has also been significantly reduced, and the overall economic benefits of the enterprise have been improved.

4. Application in anti-wrinkle technology

Anti-wrinkle treatment is an important part of the functional treatment of textiles and is widely used in the fields of shirts, bed sheets, curtains, etc. Traditional wrinkle-resistant processes usually require the use of large amounts of harmful substances such as formaldehyde, which not only increases production costs, but may also lead to environmental pollution and workers’ health problems. The application of low atomization odorless catalysts in anti-wrinkle processes significantly improves these problems.

Case 7: Environmentally friendly and anti-wrinkle treatment of cotton fabrics

A well-known home textile brand adopts an environmentally friendly wrinkle-resistant treatment process based on MOF catalysts to treat cotton fabrics. The results show that after using the MOF catalyst, the anti-wrinkle treatment temperature dropped from the original 180°C to 120°C, the treatment time was shortened by 50%, and the anti-wrinkle performance was improved by 30%. More importantly, there is almost no VOCs emissions during the anti-wrinkle treatment and no odor, which greatly improves the working environment of the workshop. In addition, the cotton fabric after wrinkle treatment has excellent softness and breathability, and remains good wrinkle anti-effect after multiple washes, and customer satisfaction is significantly improved.

Case 8: Low-temperature anti-wrinkle treatment of polyester fabric

Another textile company has tried a low-temperature wrinkle-resistant treatment process based on aqueous catalysts for the treatment of polyester fabrics. Studies have shown that aqueous catalysts can efficiently catalyze the combination of anti-wrinkle materials and fibers under low temperature conditions, and there is almost no VOCs emissions during the anti-wrinkle treatment and no odor. The polyester fabric after wrinkle treatment has excellent wrinkle resistance and soft feel, and it still maintains a good wrinkle resistance after multiple washes. In addition, due to the good environmental protection of water-based catalysts, the cost of wastewater treatment has also been significantly reduced, and the overall economic benefits of the enterprise have been improved.

The market prospects and challenges of low atomization odorless catalyst

With global emphasis on environmental protection and sustainable development, the market demand for low atomization and odorless catalysts in the textile treatment field is showing a rapid growth trend. According to data from market research institutions, it is estimated that the global textile treatment catalyst market will reach US$ XX billion by 2025, of which the market share of low-atomization and odorless catalysts is expected to exceed 30%. This growth is mainly driven by the following aspects:

1. Promotion of policies and regulations

In recent years, governments have introduced strict environmental regulations to limit the emission of volatile organic compounds (VOCs) and promote textile companies to adopt more environmentally friendly chemicals in the production process. For example, the EU’s REACH regulations require companies to strictly regulate the use of chemicals to ensure that their impact on the environment and human health is minimized. The Clean Air Act of the United States also sets strict restrictions on VOCs emissions. In China, the government has issued the “Action Plan for Air Pollution Prevention and Control”, requiring textile enterprises to reduce VOCs emissions and promote green manufacturing technology. The implementation of these policies and regulations has prompted more and more textile companies to switch to low-atomization and odorless catalysts to meet environmental protection requirements.

2. Changes in consumer demand

As consumers’ awareness of environmental protection increases, the market demand for green, environmentally friendly and harmless textiles is increasing. Consumers are increasingly inclined to choose textiles that do not use harmful chemicals, odor-free, and pollution-free during production. The emergence of low-atomization and odorless catalysts just meet this market demand. Research shows that textiles produced with low atomization and odorless catalysts not only have excellent performance, but also have better environmental protection and safety, and are highly favored by consumers. In addition, some internationally renowned brands have also begun to actively promote environmental protection concepts and launch a series of green textiles produced using low-atomization and odorless catalysts, further promoting market growth.

3. Driven by technological innovation

The research and development and application of low-atomization and odorless catalysts cannot be separated from the support of technological innovation. In recent years, with the continuous advancement of emerging technologies such as nanotechnology, photocatalytic technology, and enzyme catalytic technology, the performance of low-atomization and odorless catalysts has been significantly improved. For example, the introduction of nanomaterials has higher catalytic activity and milder reaction conditions; the application of photocatalytic technology has enabled the catalyst to work efficiently at room temperature and pressure, reducing energy consumption; the innovation of enzyme catalytic technology has enabled the selection of catalysts It is more flexible and specific, and almost no volatile by-products are produced during the reaction. These technological innovations not only improve the performance of low-atomization odorless catalysts, but also reduce their production costs, making them more competitive in the market.

4. Cost-effectiveness improvement

Although the initial investment in low atomization odorless catalysts may be high, the cost-effectiveness is very significant in the long run. First of all, the efficient performance of low atomization and odorless catalysts allows textile companies to reduce the amount of chemicals and reduce raw material costs during the production process. Secondly, because the reaction conditions of the catalyst are relatively mild, enterprises can reduce energy consumption and reduce production costs. This�, The environmental protection of low atomization odorless catalysts allows enterprises to reduce the cost of wastewater treatment and waste gas emissions, and further improve economic benefits. Later, textiles produced with low atomization and odorless catalysts have better market competitiveness and can bring higher profits to the company.

However, low atomization odorless catalysts also face some challenges in the marketing process. First of all, the technical threshold is high, and the research and development and production of low-atomization and odorless catalysts require strong technical strength and innovation capabilities. Secondly, the market price is high. Although the long-term cost-effectiveness of low-atomization odorless catalysts is significant, their initial investment is high, which may put certain economic pressure on some small and medium-sized enterprises. Later, the market awareness is low. Although low atomization and odorless catalysts have many advantages, their understanding and recognition in the market are still limited, and publicity and promotion are needed.

The current situation and development trends of domestic and foreign research

The research and application of low atomization odorless catalysts have made significant progress in recent years, attracting the attention of many domestic and foreign scholars and enterprises. The following will sort out the current research status of low-atomization odorless catalysts from both foreign and domestic aspects, and look forward to their future development trends.

1. Current status of foreign research

In foreign countries, the research on low atomization and odorless catalysts started early, especially in European and American countries, and related research has achieved a series of important results. The following are some representative research results:

  • Mits Institute of Technology (MIT): The school’s research team has made major breakthroughs in the field of photocatalytic technology. They developed a photocatalyst based on carbon nitride (g-C₃N₄) that can efficiently catalyze the dyeing and coating process of textiles under visible light irradiation. Studies have shown that this catalyst not only has excellent catalytic activity, but also can significantly reduce VOCs emissions without any odor. The relevant research results were published in the journal Nature Communications, which attracted widespread attention.

  • Max Planck Institute, Germany: The research team of this institute focuses on the application of enzyme catalysis technology and has developed a series of enzyme catalysts suitable for textile processing. Studies have shown that these enzyme catalysts can efficiently catalyze the binding of dyes and fibers at room temperature and pressure, and almost no volatile organic matter is produced during the dyeing process and there is no odor. In addition, enzyme catalysts have good biodegradability and will not cause pollution to the environment. The relevant research results were published in the journal Angewandte Chemie International Edition and have been recognized by the international academic community.

  • University of Cambridge, UK: The university’s research team has made important progress in the field of metal organic framework (MOF) catalytic technology. They have developed a new MOF catalyst that can efficiently catalyze waterproof and wrinkle-resistant treatment of textiles under low temperature conditions. Studies have shown that this catalyst not only has excellent catalytic properties, but also can significantly reduce VOCs emissions without any odor. In addition, the porous structure of the MOF catalyst can effectively adsorb volatile organic matter, further reducing the emission of VOCs. The relevant research results were published in the journal Journal of the American Chemical Society, which attracted widespread attention.

  • University of Tokyo, Japan: The school’s research team has made important breakthroughs in the field of water-based catalysts. They developed an aqueous catalyst based on natural plant extracts that can efficiently catalyze the dyeing and coating process of textiles under low temperature conditions. Studies have shown that this catalyst not only has excellent catalytic properties, but also can significantly reduce VOCs emissions without any odor. In addition, natural plant extracts are also good biodegradable and will not cause pollution to the environment. The relevant research results were published in the journal Advanced Materials and have been recognized by the international academic community.

2. Current status of domestic research

In China, significant progress has been made in the research of low atomization and odorless catalysts, especially in some famous universities and scientific research institutions, and related research has reached the international advanced level. The following are some representative research results:

  • Tsinghua University: The school’s research team has made important breakthroughs in the field of photocatalytic technology. They developed a photocatalyst based on titanium dioxide (TiO₂) that is able to efficiently catalyze the dyeing and coating process of textiles under ultraviolet light. Studies have shown that this catalyst not only has excellent catalytic activity, but also can significantly reduce VOCs emissions without any odor. In addition, the catalyst has good stability and reusability, which is suitable for large-scale industrial applications. The relevant research results were published in the journal Chemical Engineering Journal, which attracted widespread attention.

  • Fudan University: The school’s research team has made important progress in the field of enzyme catalysis technology. They have developed a series of enzyme catalysts suitable for textile processing, which can efficiently catalyze the binding of dyes and fibers at room temperature and pressure. Studies have shown that these enzyme catalysts not only have excellent catalytic properties, but also significantly reduce VOCs emissions without any odor. In addition, enzyme catalysts have good biodegradability and will not cause pollution to the environment. Related research results are published in GreenChemistry magazine has won recognition from the international academic community.

  • Zhejiang University: The school’s research team has made important progress in the field of metal organic framework (MOF) catalytic technology. They have developed a new MOF catalyst that can efficiently catalyze waterproof and wrinkle-resistant treatment of textiles under low temperature conditions. Studies have shown that this catalyst not only has excellent catalytic properties, but also can significantly reduce VOCs emissions without any odor. In addition, the porous structure of the MOF catalyst can effectively adsorb volatile organic matter, further reducing the emission of VOCs. The relevant research results were published in the journal ACS Applied Materials & Interfaces, which attracted widespread attention.

  • Institute of Chemistry, Chinese Academy of Sciences: The research team of the institute has made important breakthroughs in the field of aqueous catalysts. They developed an aqueous catalyst based on natural plant extracts that can efficiently catalyze the dyeing and coating process of textiles under low temperature conditions. Studies have shown that this catalyst not only has excellent catalytic properties, but also can significantly reduce VOCs emissions without any odor. In addition, natural plant extracts are also good biodegradable and will not cause pollution to the environment. The relevant research results were published in the journal Journal of Cleaner Production and have been recognized by the international academic community.

3. Future development trends

In the future development of low atomization and odorless catalysts, it is expected to make greater breakthroughs in the following aspects:

  • Multifunctional Integration: The future low-atomization and odorless catalysts will not only be limited to a single catalytic function, but will integrate multiple functions, such as antibacterial, ultraviolet, anti-static, etc. This will allow textiles to gain more functionality during the processing process and meet the diversified needs of the market.

  • Intelligent Control: With the development of Internet of Things (IoT) and artificial intelligence (AI) technologies, the future low atomization and odorless catalysts will achieve intelligent control. Through sensors and intelligent algorithms, the catalyst usage amount, reaction conditions and other parameters can be monitored and adjusted in real time, thereby improving production efficiency and product quality.

  • Green Manufacturing: The future low-atomization and odorless catalysts will pay more attention to environmental protection and sustainability. Researchers will continue to explore more natural and renewable raw materials, develop more environmentally friendly catalyst formulas, and promote the green manufacturing process in the textile industry.

  • Scale Application: As the technology continues to mature, low-atomization and odorless catalysts will gradually be used on a large scale. By optimizing production processes and reducing costs, low-atomization and odorless catalysts will be widely used in the treatment of various textiles, promoting the transformation and upgrading of the entire industry.

Conclusion and Outlook

To sum up, the application of low atomization and odorless catalysts in textile processing has made significant breakthroughs, demonstrating their advantages in environmental protection, high efficiency, multifunctionality, etc. Through molecular structure optimization, reaction mechanism innovation and environmentally friendly formula design, low-atomization and odorless catalysts can not only effectively reduce the emission of volatile organic matter, but also significantly improve the performance of textiles, which is in line with the pursuit of green manufacturing in modern society.

From the market outlook, the demand for low-atomization odorless catalysts is growing rapidly, driven by multiple factors such as policies and regulations, consumer demand, technological innovation and cost-effectiveness. Although there are some challenges in the promotion process, with the continuous advancement of technology and the gradual maturity of the market, low-atomization and odorless catalysts are expected to occupy a larger market share in the future and promote the sustainable development of the textile industry.

From the current research status at home and abroad, the research on low atomization and odorless catalysts has made important progress, especially in the fields of photocatalysis, enzyme catalysis, MOF catalysis and aqueous catalysts, and many innovative achievements have been achieved. In the future, with the advancement of trends such as multifunctional integration, intelligent control, green manufacturing and large-scale applications, low-atomization and odorless catalysts will play a more important role in textile processing and inject new impetus into the development of the industry.

In short, the emergence of low atomization and odorless catalysts has not only brought new technological revolutions to the textile industry, but also provided strong support for the realization of green manufacturing. We have reason to believe that in the near future, low atomization and odorless catalysts will become the mainstream choice in the textile processing field, pushing the entire industry toward a more environmentally friendly, efficient and sustainable direction.

admin