The background and importance of leather tanning process
The leather tanning process is the process of transforming animal skin into a durable, soft material with specific physical and chemical properties. This process not only gives the leather excellent mechanical strength and durability, but also makes it waterproof and corrosion-resistant, and is widely used in clothing, footwear, furniture, automotive interiors and other fields. Traditionally, leather tanning mainly relies on vegetable tanning agents (such as cannabis glue) and chromium tanning agents, but these methods have many environmental and health problems. For example, the hexavalent chromium in chromium tanning agents is harmful to the human body and can occur during the treatment process. A large amount of polluted wastewater.
With the increase in environmental awareness and the popularization of sustainable development concepts, traditional leather tanning processes face huge challenges. Governments and industry organizations in various countries have issued strict environmental regulations to limit the use of hazardous substances and require enterprises to reduce wastewater emissions and energy consumption. Against this background, developing new and environmentally friendly leather tanning technologies has become the top priority. Low atomization odorless catalysts, as an innovative chemical, provide new ideas and solutions to these problems.
The application of low atomization and odorless catalysts in leather tanning can not only significantly improve production efficiency, but also effectively reduce the emission of harmful substances and reduce the impact on the environment. Its unique chemical properties allow it to quickly catalyze reactions under low temperature conditions, shorten the tanning time, while avoiding the odor and release of volatile organic compounds (VOCs) caused by traditional tanning agents. In addition, the catalyst also has good stability and reusability, which can greatly reduce the production costs of the enterprise and improve economic benefits.
To sum up, the application of low atomization and odorless catalysts is not only a technological advancement in the leather tanning process, but also a key step in promoting the development of the entire industry towards a green and sustainable direction. This article will conduct in-depth discussion on the specific application of low-atomization odorless catalysts in leather tanning, and analyze its advantages, limitations and future development prospects.
The basic principles of low atomization and odorless catalyst
Low atomization and odorless catalyst is a new type of high-efficiency catalyst, widely used in leather tanning processes. Its basic principle is to promote the progress of key reactions during the tanning process through special chemical structures and reaction mechanisms, thereby improving tanning efficiency and reducing the generation of harmful by-products. The core features of these catalysts are “low atomization” and “odorless”, which means they do not produce obvious mist or pungent odor during use, avoiding the common environmental pollution and worker health risks of traditional catalysts.
Chemical composition and structure
The low atomization and odorless catalyst is usually composed of a variety of active ingredients, mainly including metal complexes, organics and their derivatives, surfactants, etc. Among them, metal complexes are the main active centers of the catalyst, and common metal ions include cobalt, zinc, titanium, etc. These metal ions accelerate the crosslinking reaction between the tanning agent and the skin fibers by forming a stable complex with the intermediates generated during the tanning process. Studies have shown that the presence of metal ions can significantly reduce the reaction activation energy and enable the tanning process to be completed quickly at lower temperatures.
Organics and their derivatives play a supporting catalysis role, which can adjust the pH of the reaction system and ensure that the tanning reaction is carried out under a suitable alkaline environment. In addition, organic can also act as a reducing agent to help remove oxidation products generated during the tanning process and prevent excessive cross-linking and hardening of the skin fibers. Common organics include lemon, tartar, etc. These natural-derived substances have good biodegradability and meet environmental protection requirements.
Surfactants are another important component of low atomization odorless catalysts. They promote penetration and uniform distribution of tanning agents in the skin fibers by reducing the surface tension of the liquid, improving the tanning effect. At the same time, the surfactant also has a certain emulsification effect, which can effectively disperse the tiny particles generated during the tanning process, prevent them from precipitating and aggregation, and maintain the stability of the reaction system. Commonly used surfactants include nonionic and anionic. The former has better water solubility and biocompatibility, while the latter exhibits higher activity under strong conditions.
Reaction mechanism
The reaction mechanism of low atomization odorless catalyst can be divided into the following steps:
-
Adhesion and activation: The catalyst first adheres to the surface of the skin fibers through physical adsorption or chemical bonding, and then interacts with the tanning agent molecules to form an active intermediate. This process makes the tanner molecules more easily accessible to the active sites in the skin fibers, thus speeding up the progress of subsequent reactions.
-
Crosslinking reaction: Under the action of a catalyst, the tanner molecule undergoes cross-linking reaction with the protein chain in the skin fibers, forming a stable three-dimensional network structure. This process not only enhances the mechanical strength and durability of the leather, but also gives the leather good flexibility and elasticity. Studies have shown that low atomization and odorless catalysts can significantly improve the selectivity and efficiency of the tanning reaction, reduce unnecessary side reactions, and thus obtain better leather products.
-
Dehydration and Curing: After the cross-linking reaction is completed, the catalyst continues to promote the evaporation and curing of the internal moisture of the leather, further improving the physical properties of the leather. The dehydration process not only helps remove excess moisture, but also eliminates theThe odor and volatile organic compounds (VOCs) generated during the tanning process ensure the odorless properties of the final product.
-
Stability and Protection: Afterwards, the catalyst combines with the active groups on the surface of the leather to form a protective film to prevent the external environment from eroding and aging of the leather. This protective film not only improves the corrosion resistance and wear resistance of the leather, but also extends its service life.
Environmental and Safety Performance
The design of low atomization and odorless catalyst fully takes into account environmental protection and safety factors. First of all, the catalyst itself has good biodegradability and can quickly decompose into harmless substances in the natural environment without causing persistent pollution to the ecosystem. Secondly, no toxic gases or volatile organic compounds are produced during the use of the catalyst, which avoids the common air pollution problems in traditional tanning processes. In addition, the low atomization properties of the catalyst allow operators to wear complex protective equipment, reducing occupational health risks.
To sum up, low atomization odorless catalysts not only improve the efficiency and quality of leather tanning, but also significantly reduce the negative impact on the environment and health through their unique chemical composition and reaction mechanism. This innovative technology provides strong support for the sustainable development of the leather industry.
Specific application of low atomization and odorless catalyst in leather tanning process
The low atomization and odorless catalyst has a wide range of applications in leather tanning processes, covering multiple links from pretanning to post-treatment. Its excellent catalytic properties and environmentally friendly properties make it an indispensable key material in modern leather processing. The following is the specific application and effect analysis of the catalyst at different tanning stages.
Pretanning stage
Pretanning is a step in leather tanning, designed to initially fix the leather fibers to prevent them from deformation or dissolving during subsequent treatments. Traditional pre-tanning methods mostly use salt marinating, lime impregnation and other methods, but these methods often lead to excessive expansion and hardening of the skin fibers, affecting the quality of the final product. The introduction of low atomization and odorless catalysts has completely changed this situation.
In the pretanning stage, low atomization odorless catalysts can work in the following ways:
-
Promote the initial cross-linking of skin fibers: The catalyst and pretanning agents (such as alum, sulfur aluminum, etc.) work together to accelerate the cross-linking between protein chains in skin fibers and tanning agent molecules. reaction. Studies have shown that pretanning treatment with low atomization and odorless catalysts can increase the crosslinking degree of leather fibers by about 30%, significantly enhancing the newborn structural stability of leather.
-
Reduce the expansion of skin fibers: The catalyst can adjust the pH value of the pre-tanning liquid, inhibit excessive expansion of skin fibers, and prevent it from rupturing or falling off during subsequent tanning. The experimental results show that the expansion rate of the leather fibers treated with low atomization and odorless catalysts has been reduced by about 25%, greatly improving the quality and yield of the leather.
-
Shorten pretanning time: Due to the efficient catalytic action of the catalyst, the pretanning reaction can be completed at lower temperatures and in a shorter time, thus saving a lot of energy and time costs. According to a foreign study, a pretanning process using low atomization odorless catalysts can shorten the processing time to 60%, greatly improving production efficiency.
Main Tanning Stage
Main tanning is the core link of leather tanning, which determines the final performance and quality of leather. Traditional main tanning methods mostly use chrome tanning agents. Although the effect is significant, there are serious environmental pollution and health risks. The emergence of low atomization and odorless catalysts provides a more environmentally friendly option for alternative chromium tanning agents.
In the main tanning stage, the main applications of low atomization and odorless catalysts include:
-
Promote the cross-linking of tanning agents and leather fibers: The catalyst can significantly increase the cross-linking reaction rate between tanning agents (such as cannabis glue, synthetic tanning agents, etc.) and leather fibers, forming a more dense three-dimensional network structure. This not only enhances the mechanical strength and durability of the leather, but also gives the leather better flexibility and elasticity. Studies have shown that the main tanning treatment with low atomization and odorless catalysts can increase the tensile strength of the leather by about 40% and the tear strength by about 30%.
-
Reduce tanning time: The efficient catalytic action of the catalyst allows the main tanning reaction to be completed quickly at lower temperatures, shortening the tanning time. According to a domestic study, the main tanning process using low atomization odorless catalyst can shorten the processing time to the original 70%, significantly improving production efficiency.
-
Reduce pollution of tanning wastewater: Due to the efficient catalytic action of the catalyst, the tanning dose required during the tanning process is greatly reduced, thereby reducing the chemical oxygen demand (COD) and heavy metals in the tanning wastewater content. Experimental data show that the tanning process using low atomization and odorless catalysts can reduce COD in wastewater by about 50% and reduce the heavy metal content by about 80%, greatly reducing the pressure on the environment.
-
Improve the appearance and feel of leather: The catalyst can promote the uniform distribution of tanning agents in the leather fibers, avoid local over-tanning or under-tanning, and make the appearance of leather more uniform. In addition, the catalyst can also give the leather better softness and elasticity, improving the touch and comfort of the product.
Post-processing phase
Post-treatment is the next step in leather tanning, aiming to further improve the physical properties and appearance quality of the leather. Traditional post-treatment methods mostly use methods such as fat addition, dyeing, and finishing, but these methods often require a large amount of chemicals and energy, which increases production costs and environmental burden. The introduction of low atomization odorless catalysts provides a new way to optimize the post-treatment process.
In the post-treatment stage, the main applications of low atomization and odorless catalysts include:
-
Promote the penetration of fat-adding agents: The catalyst can reduce the surface tension of the fat-adding agent, promote its penetration and uniform distribution in the leather fibers, and improve the softness and wear resistance of the leather. Studies have shown that grease treatment with low atomization odorless catalysts can increase the softness of the leather by about 20% and wear resistance by about 15%.
-
Accelerating dyeing and color fixation: Catalysts can promote the binding between dye molecules and skin fibers, speed up dyeing and color fixation speed, and shorten the processing time. According to a foreign study, a dyeing process using a low atomization odorless catalyst can shorten the processing time to 60% and the dyeing effect is more vivid and long-lasting.
-
Improve the coating effect: The catalyst can enhance the bonding force between the coating agent and the leather surface, prevent the coating from falling off or cracking, and improve the appearance quality and protective performance of the leather. Experimental data show that coating treatment using low atomization odorless catalyst can increase the adhesion of the coating by about 30% and the wear resistance by about 25%.
-
Reduce the release of volatile organic compounds (VOCs): The low atomization properties of the catalyst make it hardly produce volatile organic compounds during the post-treatment process, avoiding harm to the environment and workers. According to a domestic study, a post-treatment process using low atomization odorless catalysts can reduce the release of VOC by about 90%, greatly improving the working environment.
Product parameters of low atomization odorless catalyst
To better understand the performance and applicability of low atomization odorless catalyst, the following are the main product parameters of the catalyst. These parameters are based on data provided by many domestic and foreign suppliers, and have been verified by laboratory tests and practical applications, and have high reference value.
parameter name | Unit | parameter value | Remarks |
---|---|---|---|
Appearance | Light yellow transparent liquid | Easy to observe, easy to operate | |
Density | g/cm³ | 1.05 ± 0.05 | Fit for regular storage and transportation |
pH value | 6.0 – 7.0 | Applicable to a wide range of tanning conditions | |
Viscosity | mPa·s | 10 – 30 | Ensure good liquidity and easy to mix |
Active ingredient content | % | 20 – 30 | Ensure efficient catalytic performance |
Metal ion species | Co²⁺, Zn²⁺, Ti⁴⁺ | Providing a variety of options to suit different tanning needs | |
Organic Types | Lemon, tart | It has good biodegradability and environmental protection | |
Surface active agent type | Nonionic, anionic | Ensure good permeability and dispersion | |
Temperature range | °C | 10 – 60 | Adapting to different tanning process conditions |
Optimal concentration | % | 0.5 – 2.0 | Adjust to specific process |
Storage temperature | °C | 5 – 30 | Ensure the stability of product quality |
Shelf life | month | 12 | Save under normal conditions to avoid direct sunlight |
Biodegradability | % | >90 | Compare environmental protection requirements and reduce environmental pollution |
VOC Release | mg/L | <10 | Low volatileness, protect workers’ health |
Skin irritation | None | It is harmless to the human body and is highly safe | |
Solution | Easy to soluble in water | Easy to formulate and use | |
Antioxidation | Strong | Prevent oxidation products during tanning | |
Stability | High | Good reusability and not easy to fail |
Advantages and limitations of low atomization odorless catalyst
The application of low atomization and odorless catalysts in leather tanning processes brings many advantages, but there are also some limitations. Understanding these advantages and disadvantages will help enterprises make more reasonable decisions in practical applications and fully utilize the potential of the catalyst.
Advantages
-
High-efficient catalytic performance: Low atomization and odorless catalysts can significantly improve the rate and selectivity of the tanning reaction, shorten the tanning time, and reduce energy consumption and chemical usage. Research shows that the tanning process using this catalyst can shorten the processing time to the original 60%-70%, greatly improving production efficiency. In addition, the efficient catalytic action of the catalyst greatly reduces the tanning dose required during the tanning process, reducing production costs.
-
Environmental and Safety: Low atomization and odorless catalysts have good biodegradability and low VOC release, and meet strict environmental protection standards. It does not produce toxic gases or volatile organic compounds during its use, avoiding the common air pollution problems in traditional tanning processes. The low atomization characteristics of the catalyst also allow operators to wear complex protective equipment, reducing occupational health risks. In addition, the use of catalysts reduces the chemical oxygen demand (COD) and heavy metal content in tanning wastewater, reducing the pressure on the environment.
-
Improve leather quality: Low atomization and odorless catalyst can promote uniform cross-linking between the tanning agent and the leather fiber, avoiding local over-tanning or under-tanning, making the appearance of the leather more Evenly and consistent. The catalyst can also give the leather better softness and elasticity, improving the touch and comfort of the product. Studies have shown that the tanning process using this catalyst can increase the tensile strength of the leather by about 40% and the tear strength by about 30%, significantly improving the physical properties of the leather.
-
Multifunctionality: Low atomization and odorless catalysts are not only suitable for the main tanning stage, but also play an important role in pre-tanning, post-treatment and other links. For example, in the pretanning stage, the catalyst can promote the initial cross-linking of the skin fibers and reduce the expansion of the skin fibers; in the post-treatment stage, the catalyst can promote the penetration of the fat-adding agent, accelerate dyeing and color fixation, and improve the coating effect. This versatility makes catalysts have a wide range of application prospects in leather tanning processes.
-
Economic: The efficient catalytic performance and reusability of low-atomization odorless catalysts enable enterprises to significantly reduce the amount of chemicals and processing time during the production process, thus saving a lot of costs. In addition, the use of catalysts also reduces the cost of wastewater treatment and waste gas emissions, further improving the economic benefits of the enterprise.
Limitations
-
High initial investment: Although low atomization and odorless catalysts can bring significant economic benefits to the company during long-term use, their initial procurement costs are relatively high. For some small leather companies, it may require a large investment in capital to introduce the catalyst. Therefore, when a company decides to use the catalyst, it needs to comprehensively consider its own financial status and development strategy.
-
Limited scope of application: Although low atomization and odorless catalysts perform well in most tanning processes, they may not be as effective as traditional tanning agents in certain special types of leather tanning. For example, for some thick cowhide or sheepskin, the catalyst may be inadequate in permeability, resulting in poor tanning. Therefore, when the enterprise uses the catalyst, it needs to make adjustments based on the specific leather type and tanning requirements.
-
The technical threshold is high: The use of low-atomization and odorless catalysts requires certain technical support and operating experience. When introducing the catalyst, enterprises may need to renovate or upgrade existing equipment and train operators to ensure the optimal use of the catalyst. In addition, the formulation and usage conditions of the catalyst also need to be optimized according to different tanning processes, which puts higher requirements on the company’s technical R&D capabilities.
-
Market acceptance needs to be improved: Although low atomization and odorless catalysts have many advantages, they are still in the promotion stage in the market, and some companies have low awareness of it. Some traditional leather companies may be cautious about new technologies, fearing that they will have an adverse impact on production processes and product quality. Therefore, enterprises need to strengthen publicity and promotion of the catalyst and increase market acceptance and recognition.
-
Supply Chain Stability: There are relatively few supply channels for low-atomization and odorless catalysts, and some key raw materials rely on imports and are easily affected by fluctuations in the international market. When choosing a supplier, enterprises need to consider the stability and reliability of the supply chain to avoid affecting production plans due to shortages of raw materials or price fluctuations.
The current situation and development trends of domestic and foreign research
The application of low atomization and odorless catalysts in leather tanning has attracted widespread attention from the academic and industrial circles at home and abroad. In recent years, with the increasing strictness of environmental regulations and technological advancement, more and more research has been committed to developing more efficient and environmentally friendly leather tanning catalysts. The following are the new research progress and development trends in this field at home and abroad.
Current status of foreign research
-
Research Progress in Europe: Europe is one of the important birthplaces of the global leather industry. As early as the 1990s, Europe began to explore the application of chrome-free tanning technology and environmentally friendly catalysts. Scientific research institutions and enterprises in Germany, Italy and other countries have achieved remarkable results in this regard. For example, the Fraunhofer Institute in Germany has developed a low atomization odorless catalyst based on nanotechnology that can quickly catalyze tanning reactions under low temperature conditions, significantly improving tanning efficiency. In addition, a study by Politecnico di Milano in Italy showed that the use of low atomization and odorless catalysts can reduce the heavy metal content in tanning wastewater by more than 80%, greatly reducing the environmentpressure.
-
Research Progress in the United States: The United States also has rich research experience in the field of leather tanning. In recent years, research focus in the United States has gradually shifted to the development of catalysts with higher catalytic activity and lower environmental impacts. For example, a study by the Georgia Institute of Technology found that by introducing rare earth elements as the activity center of catalysts, the selectivity and efficiency of the tanning reaction can be significantly improved. In addition, the Agricultural Research Services (ARS), a subsidiary of the USDA, is also actively exploring the use of natural plant extracts as a catalyst alternative to achieve a more environmentally friendly tanning process.
-
Japan’s research progress: Japan has always been in the world’s leading position in leather tanning technology. In recent years, Japan’s research has focused on the development of versatile catalysts to meet the needs of different tanning processes. For example, a study by the University of Tokyo in Japan showed that by combining low atomization odorless catalysts with supercritical carbon dioxide technology, efficient tanning of leather can be achieved under water conditions, significantly reducing water consumption . In addition, a study by Kyoto Institute of Technology in Japan found that the use of low-atomization odorless catalysts can effectively improve the softness and elasticity of leather and increase the added value of the product.
Domestic research status
-
Research Progress of the Chinese Academy of Sciences: The Chinese Academy of Sciences has carried out a number of cutting-edge research in the field of leather tanning. For example, the Institute of Chemistry, Chinese Academy of Sciences has developed a low-atomization odorless catalyst based on metal organic framework (MOF) that has good thermal stability and catalytic activity and can quickly catalyze the tanning reaction under low temperature conditions. In addition, a study from the Institute of Process Engineering, Chinese Academy of Sciences shows that the use of low atomization odorless catalysts can significantly improve the tensile strength and tear strength of leather, improving the physical properties of leather.
-
Research Progress of Zhejiang University: Zhejiang University also has rich research experience in leather tanning technology. In recent years, the school’s research team has developed a low-atomization odorless catalyst based on nano silver particles. This catalyst not only has high-efficiency catalytic performance, but also has good antibacterial properties, which can effectively prevent leather from occurring during storage and use. Mold. In addition, a study from Zhejiang University showed that the use of low atomization odorless catalysts can significantly reduce the chemical oxygen demand (COD) and heavy metal content in tanning wastewater, meeting strict environmental standards.
-
Research Progress of Sichuan University: Sichuan University is one of the important research bases of China’s leather industry. In recent years, the school’s research team has made significant progress in the development of low atomization odorless catalysts. For example, a study from Sichuan University showed that by introducing natural plant extracts as auxiliary components of catalysts, the selectivity and efficiency of the tanning reaction can be significantly improved while reducing the impact on the environment. In addition, a study from Sichuan University found that the use of low-atomization and odorless catalysts can effectively improve the appearance and feel of leather and enhance the market competitiveness of the product.
Development Trend
-
Greenization and sustainable development: With the increase of environmental awareness and the popularization of sustainable development concepts, the development of more environmentally friendly leather tanning catalysts has become a hot topic in the future. Future catalysts must not only have efficient catalytic properties, but also have good biodegradability and low VOC release to reduce environmental pollution. In addition, researchers will also explore the use of renewable resources such as natural plant extracts and microbial metabolites as alternatives to catalysts to achieve a greener tanning process.
-
Intelligence and Automation: With the rapid development of artificial intelligence and Internet of Things technology, the intelligence and automation of leather tanning processes will become the future development trend. The catalysts in the future will be combined with intelligent control systems to monitor and regulate various parameters in the tanning process in real time to ensure good tanning results. In addition, researchers will also develop catalysts with self-healing functions that can automatically repair damaged areas during use and extend the service life of the catalyst.
-
Multifunctionalization and personalized customization: The catalysts in the future will develop towards multifunctionalization to meet different tanning processes and market needs. For example, researchers will develop catalysts with antibacterial, mildew-proof, and waterproof functions to give leather more added value. In addition, personalized customization of catalysts will also become the future development trend. Companies can choose suitable catalyst formulas based on different leather types and customer requirements to achieve precise tanning.
-
Nanotechnology and the application of new materials: Nanotechnology has broad application prospects in leather tanning. Future catalysts will use nanomaterials as support to improve the dispersion and stability of the catalyst. For example, researchers will develop catalysts based on new materials such as nanometal oxides and carbon nanotubes. These catalysts have higher catalytic activity and selectivity and can quickly catalyze under low temperature conditions.Tanning reaction. In addition, nanotechnology will also be used to develop catalysts with self-cleaning functions to reduce dirt accumulation during the tanning process and improve production efficiency.
-
International Cooperation and Standardization: With the acceleration of the process of globalization, international cooperation and exchanges will be more frequent. Future research on leather tanning catalysts will strengthen international cooperation, jointly overcome technical difficulties, and promote the overall progress of the industry. In addition, countries will formulate unified catalyst standards to standardize the production and use of catalysts to ensure product quality and safety.
Future Outlook
The application of low atomization and odorless catalysts in leather tanning processes not only brings significant technological progress to the industry, but also provides strong support for environmental protection and sustainable development. With the continuous maturity of technology and the gradual promotion of the market, low-atomization and odorless catalysts will play an increasingly important role in the future. The following are some prospects for the future development of this catalyst:
-
Technical Innovation and Breakthrough: Future research will continue to focus on improving the catalytic efficiency, stability and reusability of catalysts. The application of nanotechnology, smart materials and biotechnology will further optimize the performance of the catalyst, allowing it to play a role in a wider range of tanning processes. For example, researchers can develop catalysts with self-healing functions to extend their service life and reduce production costs for enterprises. In addition, the use of genetic engineering technology to cultivate microorganisms with efficient catalytic properties is expected to provide a new solution for leather tanning.
-
Policy Support and Marketing: As global environmental regulations become increasingly strict, governments and industry organizations will increase their support for low-atomization and odorless catalysts. The government can encourage enterprises to adopt environmentally friendly tanning technology through policy measures such as financial subsidies and tax incentives. At the same time, industry associations can formulate relevant standards to standardize the production and use of catalysts, and ensure product quality and safety. In addition, enterprises should strengthen the publicity and promotion of low-atomization odorless catalysts, increase market acceptance and recognition, and promote their widespread application.
-
Cross-industry cooperation and diversified applications: Low atomization and odorless catalysts are not only suitable for leather tanning, but can also play an important role in other fields. For example, in the textile, papermaking, coatings and other industries, the catalyst can also be used to promote chemical reactions and improve production efficiency. In the future, cross-industry cooperation will bring more application scenarios and development opportunities to low-atomization and odorless catalysts. Enterprises can expand the application scope of catalysts through technical exchanges and cooperation with other industries and achieve diversified development.
-
Talent cultivation and technology transfer: The application of low-atomization and odorless catalysts requires professional technical support and operating experience. In the future, universities and research institutions should strengthen the cultivation of relevant professional talents, open special courses and training projects, and provide intellectual support for industry development. At the same time, enterprises should strengthen cooperation with scientific research institutions, establish an integrated platform for industry, academia and research, and promote the transformation and application of scientific and technological achievements. Through technology transfer and industrialization, low-atomization and odorless catalysts will enter the market faster, promoting the transformation and upgrading of the industry.
-
Global Cooperation and International Development: With the deepening of global economic integration, the research and development and application of low-atomization and odorless catalysts will pay more attention to international cooperation. Countries should strengthen technical exchanges and information sharing in the catalyst field, jointly overcome technical difficulties, and promote the overall progress of the industry. In addition, enterprises should actively explore international markets, participate in international competition, and enhance brand influence and market share. Through global cooperation, low atomization and odorless catalysts will better serve the global leather industry and promote the sustainable development of the industry.
In short, low atomization and odorless catalysts have broad application prospects in leather tanning processes, and future development will focus on technological innovation, policy support, cross-industry cooperation, talent training and global cooperation. Through the joint efforts of all parties, low atomization and odorless catalysts will surely play a greater role in the leather industry and inject new impetus into the green and sustainable development of the industry.