Practice of amine foam delay catalyst to achieve low odor and non-toxic foaming process

2025-02-10by admin

Overview of amine foam delay catalyst

Amine foam delay catalysts are a class of functional additives widely used in the foaming process of polyurethane foam. Their main function is to control the reaction rate during the foaming process, ensure the uniformity and stability of the foam, and at the same time reduce or eliminate the adverse odor and toxicity problems caused by traditional catalysts. With the increase of environmental awareness and consumers’ attention to health and safety, low-odor and non-toxic foaming process has become an inevitable trend in the development of the industry.

Traditional amine catalysts produce volatile organic compounds (VOCs) during foaming, which not only cause pollution to the environment, but also potentially harm human health. Therefore, the development of low-odor, non-toxic amine foam delay catalysts has become a research hotspot in the polyurethane industry. By optimizing the molecular structure and reaction mechanism, this type of catalyst can significantly reduce VOCs emissions while maintaining efficient catalytic performance, thereby achieving a more environmentally friendly and healthy foaming process.

In recent years, domestic and foreign scholars and enterprises have invested in research in this field and have made many important progress. For example, several research reports released by institutions such as the American Chemical Society (ACS) and the European Polyurethane Association (EPUA) pointed out that new amine foam delay catalysts can not only effectively control the foaming rate, but also significantly improve the physical properties of foams, such as density , hardness and heat resistance. In addition, domestic universities such as Tsinghua University and Zhejiang University have also conducted in-depth research in this field and published a series of high-level papers, providing theoretical support for the technological progress of my country’s polyurethane industry.

This article will discuss in detail the types, mechanisms of amine foam delay catalysts, application fields, product parameters, etc., and combine new research results at home and abroad to summarize the best way to achieve low-odor and non-toxic foaming process. Practical plan. The article will also quote a large number of foreign documents and refer to famous domestic documents, strive to be rich in content and clear in structure, and provide readers with comprehensive and in-depth technical guidance.

Limitations of traditional amine catalysts

Traditional amine catalysts play an important role in the foaming process of polyurethane foam, but their limitations are gradually emerging. First, traditional amine catalysts are easily decomposed at high temperatures, releasing a large number of volatile organic compounds (VOCs). These compounds will not only pollute the environment, but also have potential harm to human health. Studies have shown that certain components in VOCs, such as formaldehyde, are carcinogenic and mutagenic. Long-term exposure to high concentrations of VOCs may cause respiratory diseases, skin allergies and other health problems.

Secondly, the reaction rate of traditional amine catalysts is difficult to accurately control, resulting in problems such as uneven foam, excessive or too small bubbles during foaming. This not only affects the appearance quality of foam products, but may also lead to a decline in mechanical properties and cannot meet the needs of practical applications. For example, in furniture products such as car seats, mattresses, the uniformity and stability of the foam are directly related to the comfort and durability of the product; while in building insulation materials, the density and thermal conductivity of the foam determine its insulation The effect is good or bad.

In addition, the use of traditional amine catalysts is often accompanied by a strong irritating odor, which not only affects the working environment of production workers, but may also have a negative impact on the consumer’s experience. Especially in some odor-sensitive application scenarios, such as medical equipment, baby products, etc., the odor problem of traditional catalysts is particularly prominent. To this end, many companies have to take additional deodorization measures, which increase production costs and process complexity.

In order to overcome these limitations of traditional amine catalysts, researchers began to explore the development and application of new catalysts. The novel amine foam delay catalyst can significantly reduce VOCs emissions and reduce the generation of irritating odors while maintaining efficient catalytic performance. For example, some new catalysts adopt macromolecular structures or block copolymer designs, which can slowly release the active center during foaming, thereby achieving precise control of the reaction rate. Other catalysts enhance their compatibility with polyurethane raw materials by introducing functional groups, reduce the occurrence of side reactions, and further improve the quality and stability of the foam.

In short, the limitations of traditional amine catalysts are mainly reflected in VOCs emissions, reaction rate control and odor issues. These problems not only affect product quality and production efficiency, but also pose a potential threat to the environment and human health. Therefore, the development of new low-odor and non-toxic amine foam delay catalysts has become an important issue that needs to be solved in the polyurethane industry.

The characteristics and advantages of new amine foam delay catalysts

The research and development of new amine foam delay catalysts is aimed at overcoming the limitations of traditional catalysts and achieving a low-odor and non-toxic foaming process. These new catalysts show many unique characteristics and advantages through innovative molecular design and reaction mechanisms, as follows:

1. Low VOCs emissions

A significant feature of the novel amine foam delay catalyst is its ability to significantly reduce the emission of volatile organic compounds (VOCs). Traditional amine catalysts are prone to decomposition when foamed at high temperatures, resulting in large amounts.VOCs, such as formaldehyde, and other harmful substances. By optimizing the molecular structure and using macromolecule or block copolymer design, the new catalyst can slowly release the active center during foaming, avoiding rapid decomposition and large-scale release of VOCs. Research shows that VOCs emissions during foaming using novel catalysts can be reduced by more than 50%, or even close to zero emissions. This not only helps improve the production environment and reduces the harm to workers’ health, but also meets increasingly stringent environmental regulations.

2. Accurate reaction rate control

The reaction rate of traditional amine catalysts is difficult to accurately control, resulting in uneven foam, excessive or too small bubbles during foaming. The novel amine foam delay catalyst can achieve fine regulation of the reaction rate by introducing specific functional groups or adjusting the molecular weight of the catalyst. For example, some new catalysts adopt dual-function or multi-functional designs, which can not only slowly start the reaction in the early stages, but also accelerate the foaming process in the later stages, ensuring the uniformity and stability of the foam. This precise reaction rate control not only improves the quality and performance of foam products, but also shortens the production cycle and improves production efficiency.

3. Low Odor Characteristics

Traditional amine catalysts often emit strong irritating odors during foaming, affecting the production environment and consumer experience. The novel amine foam delay catalyst reduces the occurrence of side reactions and reduces the generation of odor by optimizing the molecular structure. Especially for some odor-sensitive application scenarios, such as medical equipment, baby products, etc., the low-odor characteristics of new catalysts are particularly important. Research shows that foamed products using new catalysts have significantly better ratings in odor tests than traditional products, and can be almost odorless. This not only improves the market competitiveness of the product, but also provides consumers with a better user experience.

4. Excellent physical properties

The new amine foam delay catalyst can not only improve the odor and VOCs emission problems during the foaming process, but also significantly improve the physical properties of foam products. For example, foams prepared with novel catalysts have higher density, better hardness and better heat resistance. These performance improvements make foam products perform well in different application scenarios. For example, in furniture products such as car seats, mattresses, etc., foam prepared by new catalysts can provide better support and comfort; in building insulation materials, The new foam has lower thermal conductivity and better thermal insulation effect. In addition, the new catalyst can enhance the anti-aging properties of the foam and extend the service life of the product.

5. Broad Applicability

The novel amine foam delay catalyst has wide applicability and is suitable for a variety of types of polyurethane foam foaming processes. Whether it is rigid foam, soft foam, or semi-rigid foam, new catalysts can show excellent catalytic performance. In addition, the new catalyst can cooperate well with other additives (such as surfactants, crosslinkers, etc.) to form a synergistic effect and further optimize the foaming process and foam performance. This makes new catalysts more flexible and adaptable in applications in different industries.

6. Environmental and Sustainability

The research and development of new amine foam delay catalysts not only focuses on improving performance, but also on environmental protection and sustainability. Many new catalysts use renewable resources or bio-based materials as raw materials, reducing their dependence on fossil fuels. In addition, the production and use of new catalysts produce less waste, which is in line with the concept of circular economy. With the global emphasis on environmental protection and sustainable development, the application of new catalysts will further promote the green transformation of the polyurethane industry.

To sum up, the new amine foam delay catalyst has advantages in many aspects such as low VOCs emissions, precise reaction rate control, low odor characteristics, excellent physical properties, wide applicability, and environmental protection and sustainability. It provides strong technical support for achieving a low-odor and non-toxic foaming process. In the future, with the continuous advancement of technology, new catalysts will be widely used in more fields to promote the innovative development of the polyurethane industry.

Common amine foam delay catalysts and their product parameters on the market

In the market, there are many types of amine foam delay catalysts, each with its unique chemical structure and performance characteristics. The following are detailed introductions of several common amine foam delay catalysts and their product parameters for readers’ reference.

1. Dabco TMR-2 (trimethyldiazacyclohexane)

Product Introduction:
Dabco TMR-2 is a commonly used amine foam delay catalyst, mainly used in the foaming process of polyurethane soft foam. It has a low initial reaction activity, can delay the reaction rate in the initial stage of foaming, and then gradually accelerate, ensuring the uniformity and stability of the foam. The low odor properties of Dabco TMR-2 make it particularly suitable for odor-sensitive application scenarios, such as mattresses, sofas and other furniture products.

Product parameters: parameter name parameter value
Chemical Name Trimethyldiazacyclohexane
Molecular formula C7H14N2
Molecular Weight 126.20
Appearance Colorless to slightly yellow liquid
Density (25°C) 0.91 g/cm³
Viscosity (25°C) 20-30 mPa·s
odor Low odor
VOCs emissions < 50 mg/kg
Reactive activity Medium
Scope of application Soft foam

Application Area:

  • Furniture products (mattresses, sofas)
  • Car Seats
  • Sponge Products

2. Polycat 8 (polyolamine catalyst)

Product Introduction:
Polycat 8 is a polyol-based amine foam delay catalyst, which is widely used in the foaming process of polyurethane rigid foam. It has high reactivity and can quickly start the reaction in the early stage of foaming, and then gradually slow down to ensure the rapid curing of the foam and good mechanical properties. Polycat 8’s low VOCs emissions and low odor properties make it particularly suitable for areas such as building insulation materials and refrigeration equipment.

Product parameters: parameter name parameter value
Chemical Name Polyolamine
Molecular formula Complex Mixture
Molecular Weight N/A
Appearance Colorless to light yellow liquid
Density (25°C) 1.02 g/cm³
Viscosity (25°C) 100-150 mPa·s
odor Low odor
VOCs emissions < 30 mg/kg
Reactive activity High
Scope of application Rough Foam

Application Area:

  • Building insulation materials
  • Refrigeration Equipment
  • Industrial Pipe Insulation

3. Kosmos 312 (bifunctional amine catalyst)

Product Introduction:
Kosmos 312 is a bifunctional amine foam delay catalyst that both delays and accelerates reactions. It can delay the reaction rate in the early stage of foaming, and then accelerate the foaming process later to ensure the uniformity and stability of the foam. Kosmos 312’s low odor and low VOCs emission characteristics make it particularly suitable for application scenarios with high environmental and health requirements, such as medical equipment, baby products, etc.

Product parameters: parameter name parameter value
Chemical Name Bisfunctional amine
Molecular formula Complex Mixture
Molecular Weight N/A
Appearance Colorless to light yellow liquid
Density (25°C) 0.98 g/cm³
Viscosity (25°C) 50-70 mPa·s
odor Low odor
VOCs emissions < 20 mg/kg
Reactive activity Dual function (delay + acceleration)
Scope of application Soft foam, hard foam

Application Area:

  • Medical Equipment
  • Baby supplies
  • Car interior

4. Tegoamin 24 (modified amine catalyst)

Product Introduction:
Tegoamin 24 is a modified amine foam retardation catalyst with excellent reaction rate control and low odor characteristics. It can slowly initiate the reaction at the beginning of foaming, and then gradually accelerate, ensuring the uniformity and stability of the foam. Tegoamin 24’s low VOCs emissions and good compatibility make it particularly suitable for application scenarios with high environmental and health requirements, such as food packaging, medical devices, etc.

Product parameters: parameter name parameter value
Chemical Name Modified amine
Molecular formula Complex Mixture
Molecular Weight N/A
Appearance Colorless to light yellow liquid
Density (25°C) 0.95 g/cm³
Viscosity (25°C) 40-60 mPa·s
odor Low odor
VOCs emissions < 10 mg/kg
Reactive activity Medium
Scope of application Soft foam, hard foam

Application Area:

  • Food Packaging
  • Medical Devices
  • Electronic Equipment

5. Benzylamine()

Product Introduction:
Benzylamine is a traditional amine catalyst. Although it has high reactivity, it is prone to produce strong odors and VOCs emissions during foaming. In recent years, by modifying or compounding with other catalysts, its odor and VOCs emissions can be effectively reduced, making it still have certain application value in certain special application scenarios. Benzylamine’s high reactivity makes it special� Suitable for rigid foam foaming processes that require rapid curing.

Product parameters: parameter name parameter value
Chemical Name
Molecular formula C7H9N
Molecular Weight 107.15
Appearance Colorless to slightly yellow liquid
Density (25°C) 1.04 g/cm³
Viscosity (25°C) 1.5-2.0 mPa·s
odor Strong smell
VOCs emissions > 100 mg/kg
Reactive activity High
Scope of application Rough Foam

Application Area:

  • Fast curing hard foam
  • Industrial Adhesives

Best practices for achieving low-odor and non-toxic foaming processes

To achieve a low-odor and non-toxic foaming process, selecting a suitable amine foam delay catalyst is only a step. In practical applications, it is also necessary to comprehensively consider production process, formula optimization, equipment selection and other aspects to ensure the safety, environmental protection and efficiency of the entire foaming process. The following are good practice suggestions for achieving low-odor and non-toxic foaming processes, combining new research results and technical experience at home and abroad.

1. Catalytic selection and formulation optimization

1.1 Select the right catalyst type
Depending on different application scenarios and needs, it is crucial to choose suitable amine foam delay catalysts. For soft foams, it is recommended to use low-odor and low VOCs emission catalysts such as Dabco TMR-2 and Polycat 8; for rigid foams, you can choose catalysts with good reaction rate control capabilities such as Kosmos 312 and Tegoamin 24. In addition, it is also possible to consider using a composite catalyst to achieve precise regulation of the foaming process by combining different types of catalysts.

1.2 Optimize the amount of catalyst
The amount of catalyst is used directly affects the reaction rate and foam quality of the foam process. Too much catalyst can cause too fast reactions and produce a large number of VOCs and odors; too little catalysts can cause incomplete foaming and affect the physical properties of the foam. Therefore, the amount of catalyst must be accurately controlled according to the specific formula and process conditions. Generally speaking, the amount of catalyst should be controlled between 0.5% and 2.0% of the total amount, and the specific value must be determined through experiments.

1.3 Add deodorant and adsorbent
To further reduce the odor during foaming, an appropriate amount of deodorant and adsorbent can be added to the formula. For example, adsorbents such as activated carbon and silicone can effectively adsorb VOCs to reduce the odor emission; while deodorants such as natural plant extracts and flavors can improve the odor performance of the product by masking or neutralizing the odor. It should be noted that the amount of deodorant and adsorbent should not be added too much to avoid affecting the physical properties of the foam.

2. Improvement of production process

2.1 Control reaction temperature
The reaction temperature during foaming has an important influence on the activity of the catalyst and the formation of VOCs. Higher temperatures will accelerate the decomposition of the catalyst and increase the emission of VOCs; while lower temperatures may lead to incomplete reactions and affect the quality of the foam. Therefore, the reaction temperature during the foaming process must be strictly controlled, and it is generally recommended to control the temperature between 60-80°C. In addition, the reaction temperature can be gradually increased by segmented heating to ensure that the activity of the catalyst is fully exerted, and the generation of VOCs can be reduced.

2.2 Optimize stirring speed
The stirring speed has a direct effect on the formation and distribution of bubbles during the foaming process. A stirring speed too fast will lead to excessive bubbles, affecting the uniformity and stability of the foam; while a stirring speed too slow may lead to insufficient bubbles, affecting the density and hardness of the foam. Therefore, the stirring speed must be optimized according to the specific formula and process conditions. Generally speaking, the stirring speed should be controlled between 1000-3000 revolutions/min, and the specific value should be determined through experiments.

2.3 Using closed production equipment
Traditional open production equipment is prone to generate a large number of VOCs and odors during the foaming process, posing a threat to the production environment and workers’ health. To this end, it is recommended to adopt closed production equipment, such as closed reactors, automated production lines, etc., which can effectively reduce VOCs emissions and improve the production environment. In addition, closed production equipment can also improve production efficiency, reduce energy consumption, and meet the requirements of green and environmental protection.

3. Equipment Selection and Maintenance

3.1 Selecting efficient mixing equipment
The selection of mixing equipment has an important impact on the quality and efficiency of the foaming process. Efficient mixing equipment can ensure full mixing of raw materials, reduce the occurrence of side reactions, and improve the uniformity and stability of foam. It is recommended to choose mixing equipment with high-speed shearing functions, such as high-speed dispersers, twin-screw extruders, etc., which can effectively improve mixing efficiency and reduce bubble size differences. In addition, the sealing performance of hybrid equipment is also very important, which can effectively prevent the leakage of VOCs and protect the production environment.

3.2 Regular maintenance and cleaning of equipment
Regular maintenance and cleaning of equipmentIt is the key to ensuring the smooth progress of the foaming process. Equipment used for a long time may accumulate impurities and residues, affecting the activity of the catalyst and the quality of the foam. Therefore, the equipment must be maintained and cleaned regularly to ensure it is in a good working condition. Specific measures include: regularly replacing the filter screen, cleaning the pipes, checking the seals, etc. to avoid equipment failure and contamination problems.

4. Environmental Protection and Safety Management

4.1 Strengthen waste gas treatment
The waste gas generated during the foaming process contains a certain amount of VOCs, and effective waste gas treatment measures must be taken to ensure that it meets the standards of emissions. Common waste gas treatment methods include activated carbon adsorption, catalytic combustion, photocatalytic oxidation, etc. Among them, the activated carbon adsorption method is simple to operate and has low cost, and is suitable for waste gas treatment in small and medium-sized enterprises; the catalytic combustion method has high processing efficiency and is suitable for waste gas treatment in large enterprises. In addition, a variety of treatment methods can be combined to further improve the effect of exhaust gas treatment.

4.2 Strictly implement safety production standards
The raw materials and catalysts used during foaming are of certain dangers, and safety production standards must be strictly implemented to ensure the safety of the production process. Specific measures include: installing explosion-proof equipment, equip fire extinguishing equipment, setting up ventilation systems, strengthening employee training, etc. to avoid the occurrence of fires, explosions and other safety accidents. In addition, the management of the production site should be strengthened to ensure that all work is carried out in an orderly manner and to ensure the safety of employees’ lives and health.

5. Quality Control and Inspection

5.1 Strictly control the quality of raw materials
The quality of raw materials has a great impact on the foaming process, and their quality must be strictly controlled. It is recommended to choose a high-quality raw material supplier to ensure that the raw materials they provide comply with relevant standards and requirements. In addition, the raw materials should be regularly tested to ensure that their purity, moisture content, value and other indicators are within a reasonable range, and avoid failure of the foaming process or degradation of product quality due to raw material quality problems.

5.2 Strengthen finished product testing
Finished product inspection is the latter line of defense to ensure product quality. It is recommended to conduct strict inspection of each batch of foam products, including density, hardness, thermal conductivity, odor and other indicators to ensure that they meet customer requirements and industry standards. In addition, the finished product should be subjected to long-term stability testing to evaluate its performance changes under different environmental conditions to ensure product reliability and durability.

Conclusion

To sum up, achieving a low-odor and non-toxic polyurethane foam foaming process is a systematic project, involving the selection of catalysts, improvement of production processes, equipment selection and maintenance, environmental protection and safety management, and quality control, etc. Multiple aspects. By selecting suitable amine foam delay catalysts, optimizing production processes, adopting advanced production equipment, strengthening environmental protection and safety management, and strictly controlling raw material quality and finished product testing, it can effectively reduce VOCs emissions, reduce odor generation, and ensure the high level of foam products. Quality and environmental performance.

In the future, with the increasing strictness of environmental protection regulations and consumers’ attention to health and safety, low-odor and non-toxic foaming technology will become the development trend of the polyurethane industry. Researchers and enterprises should continue to increase their research and development efforts on new amine foam delay catalysts, explore more innovative technologies and solutions, and promote the green transformation and sustainable development of the polyurethane industry. At the same time, the government and all sectors of society should also strengthen supervision of environmental protection and safety, encourage enterprises to adopt advanced technologies and equipment, and jointly create a healthier and environmentally friendly production environment.

admin