Amines foam delay catalyst: the driving force for the research and development of new materials in sustainable development

2025-02-10by admin

Introduction

Amine-based Delayed Action Catalysts (ADAC) have been widely used in foam plastics, polyurethane materials and other fields in recent years. Its main function is to control the reaction rate during the foaming process, thereby achieving uniformity and stability of the foam material. With the increasing global attention to sustainable development, the research and development of new materials has become an important driving force for economic and social progress. Amines foam delay catalysts can not only improve production efficiency, but also significantly reduce energy consumption and environmental pollution, so they are regarded as an important part of green chemistry.

This article will conduct in-depth discussions on the principles, applications, market status and future development trends of amine foam delay catalysts, and will analyze their role in sustainable development in detail by citing a large number of domestic and foreign literature. The article will be divided into the following parts: 1. The basic principles of amine foam delay catalysts; 2. Product parameters and performance characteristics; 3. Domestic and foreign research progress and application cases; 4. Market demand and development trends; 5. Sustainable Contributions in development; 6. Conclusions and prospects.

1. Basic principles of amine foam retardation catalyst

Amine foam delay catalyst is a chemical additive used to regulate the foaming process of polyurethane foam. Its core function is to delay the reaction between isocyanate and polyol, so that the foam can maintain a stable expansion state for a longer period of time, thereby avoiding premature curing or excessive expansion. This delay effect helps improve the uniformity, density and mechanical properties of foam materials.

1.1 Reaction mechanism

The main components of amine catalysts are tertiary amines and their derivatives, such as dimethylcyclohexylamine (DMCHA), triethylenediamine (TEDA), etc. These compounds play a role in promoting the reaction of isocyanate with water to form carbon dioxide during the polyurethane foaming process, and can also accelerate the cross-linking reaction between isocyanate and polyol. However, the unique feature of amine-based delay catalysts is that they can inhibit the occurrence of these reactions at the beginning of the reaction, so that the foam material maintains a low viscosity for a certain period of time, facilitating gas escape and the formation of foam structures.

Study shows that the retardation effect of amine-based delay catalysts is closely related to their molecular structure. For example, tertiary amine compounds containing larger steric hindrances generally have better delay properties because they can temporarily block contact between isocyanate and polyol, thereby prolonging the reaction time. In addition, the alkalinity of amine catalysts will also affect its delay effect. Stronger alkaline catalysts may lead to too fast reactions, while weaker alkaline catalysts can better control the reaction rate.

1.2 Influencing factors

The effect of amine foam delay catalysts is affected by a variety of factors, including temperature, humidity, raw material ratio, and the type and dosage of the catalyst. Generally speaking, higher temperatures will accelerate the reaction between isocyanate and polyol, thereby shortening the delay time; conversely, lower temperatures will prolong the delay time. The impact of humidity on amine catalysts is mainly reflected in the presence or absence of water, because water is one of the key reactants for the generation of carbon dioxide. If the humidity is too high, it may lead to premature gas generation, affecting the quality of the foam.

In addition, raw material ratio is also an important factor affecting the performance of amine catalysts. Different types of isocyanate and polyols have different sensitivity to catalysts, so they need to be optimized according to the specific formulation. For example, rigid polyurethane foams usually use more isocyanate, while soft foams require more polyols. In this case, selecting the appropriate amine catalyst and adjusting its dosage can effectively improve the physical properties of the foam.

2. Product parameters and performance characteristics

In order to better understand the application characteristics of amine foam delay catalysts, this section will introduce its main product parameters and performance characteristics in detail, and display the comparison of different types of catalysts in a table form.

2.1 Product parameters

Table 1: Product parameters of common amine foam delay catalysts

Catalytic Name Chemical structure Alkaline Strength Active temperature range (℃) Delay time (min) Application Fields
Dimethylcyclohexylamine (DMCHA) C8H17N Medium 20-80 5-10 Soft polyurethane foam
Triethylenediamine (TEDA) C6H12N2 Strong 30-90 3-8 Rough polyurethane foam
Dimethylamine (DMAE) C4H11NO Winner 15-70 8-15 High rebound foam
Pentamymethyldiethylenetriamine (PMDETA) C9H23N3 Strong 25-85 4-10 Self-crusting foam
Dimethylbenzylamine (DMBA) C9H13N Medium 20-75 6-12 Cold-ripened foam

It can be seen from Table 1 that different types of amine catalysts have significant differences in chemical structure, alkaline strength, active temperature range and delay time. For example, DMCHA has a longer delay time and is suitable for the production of soft foams; while TEDA has a shorter delay time and is more suitable for the application of rigid foams. In addition, DMAE is suitable for high rebound foam due to its weak alkalinity.It can provide better delay effect at lower temperatures.

2.2 Performance Features

The performance characteristics of amine foam delay catalysts are mainly reflected in the following aspects:

  1. Serious delay effect: amine catalysts can effectively delay the reaction between isocyanate and polyol at the beginning of the reaction, thereby providing sufficient time for the formation of foam materials. This not only helps to improve the uniformity and density of the foam, but also reduces pore defects and improves the mechanical properties of the product.

  2. Strong temperature adaptability: Amines catalysts show good activity in a wide temperature range and can play a stable role under different production process conditions. Especially in low temperature environments, some amine catalysts (such as DMAE) can still maintain good delay effect and are suitable for foam production in cold areas.

  3. Excellent environmental protection performance: Compared with traditional organic tin catalysts, amine catalysts have lower toxicity and will not release harmful substances, which meets modern environmental protection requirements. In addition, amine catalysts have good degradability and can gradually decompose in the natural environment, reducing long-term pollution to the environment.

  4. Good compatibility: Amines catalysts have good compatibility with a variety of polyurethane raw materials and can play a catalytic role without affecting the performance of other components. This is particularly important for complex multi-component systems, which can ensure synergistic reactions between the components and improve the quality of the final product.

3. Domestic and foreign research progress and application cases

The research and application of amine foam delay catalysts have made significant progress, especially in the preparation of polyurethane foam materials. This section will introduce new research results of amine catalysts based on relevant domestic and foreign literature and list some typical application cases.

3.1 Progress in foreign research

In recent years, foreign scholars have conducted extensive research on amine foam delay catalysts, involving their synthesis methods, reaction mechanisms and applications in different fields. The following are some representative research results:

  1. In-depth discussion of reaction mechanism: Smith et al. of the University of Michigan, USA (2018), revealed the mechanism of action of amine catalysts in the process of polyurethane foaming through molecular dynamics simulation. They found that the delay effect of amine catalysts is closely related to the steric hindrance and electron cloud density in their molecular structure. Larger steric hindrance temporarily prevents contact between isocyanate and polyol, while higher electron cloud density helps enhance the alkalinity of the catalyst, thereby accelerating subsequent reactions.

  2. Development of novel catalysts: Research team of Bayer AG in Germany (2019) successfully developed a novel amine catalyst based on amino derivatives. This catalyst not only has excellent retardation properties, but also can be activated quickly at lower temperatures, making it suitable for the production of cold-cured foams. Experimental results show that the foam materials prepared with this catalyst have higher density and better mechanical properties, and significantly reduced production costs.

  3. Application of environmentally friendly catalysts: Tanaka et al. of Tokyo University of Technology, Japan (2020) proposed an environmentally friendly amine catalyst based on natural plant extracts. The catalyst is chemically modified from soy protein and lignin, and has low toxicity and good biodegradability. Applying it to the preparation of polyurethane foam can not only reduce environmental pollution, but also improve the flexibility and durability of foam materials.

3.2 Domestic research progress

Domestic scholars have also made important breakthroughs in the research of amine foam delay catalysts, especially in the synthesis process and application technology of catalysts. The following are some representative research results:

  1. Synthesis of high-efficiency catalysts: Professor Li’s team from the Institute of Chemistry, Chinese Academy of Sciences (2017) developed an efficient amine catalyst synthesis method, which significantly improved the catalyst’s Delay effect and reactivity. This method is simple and easy to use and is suitable for large-scale industrial production. Experimental results show that the foam material prepared using the catalyst has a uniform pore structure and excellent mechanical properties, and the production cycle is shortened by about 30%.

  2. Development of composite catalysts: Professor Wang’s team from the Department of Chemical Engineering of Tsinghua University (2018) has developed a composite amine catalyst composed of a variety of tertiary amine compounds that can exert delays at different stages. and accelerate. The catalyst has a wide range of active temperatures and good compatibility and is suitable for a variety of types of polyurethane foam materials. Experiments show that the foam materials prepared using this catalyst have higher compressive strength and better thermal insulation properties, and are suitable for the field of building insulation.

  3. Application of green catalysts: Professor Zhang’s team from the School of Environment of Nanjing University (2019) proposed a biomass-based green amine catalyst made of chemical treatment of waste plant cellulose. This catalyst has low toxicity and good biodegradability, and can effectively replace traditional organotin catalysts in the preparation of polyurethane foam. The experimental results show thatThe foam materials prepared with this catalyst have excellent environmental protection and mechanical properties, and are at low production costs.

3.3 Application Cases

Amine foam delay catalysts have been widely used in many fields. The following are some typical application cases:

  1. Building Insulation Materials: In northern China, the temperature is low in winter, and traditional polyurethane foam insulation materials are prone to problems such as uneven pores and low density. To this end, a building materials company successfully solved this problem by using a DMAE-based amine catalyst. The insulation material prepared with this catalyst has a uniform pore structure and a high density, which can effectively prevent heat loss and greatly improve the energy-saving effect of the building.

  2. Car seat foam: Car seat foam requires high resilience and good comfort. A certain automaker has introduced a PMDETA-based amine catalyst in its seat foam production, significantly improving the foam’s rebound performance and durability. Experimental results show that the seat foam prepared with this catalyst can maintain good shape recovery after multiple compressions, and its service life is increased by about 20%.

  3. Home appliance insulation layer: The insulation layer of home appliance products requires good thermal insulation performance and low thermal conductivity. A home appliance company used a TEDA-based amine catalyst in the insulation layer production of its refrigerators and air conditioners, successfully improving the thermal insulation effect of foam materials. Experimental results show that the insulation layer prepared with this catalyst can effectively reduce cooling capacity loss, reduce energy consumption, and enhance product competitiveness.

IV. Market demand and development trends

With the global emphasis on environmental protection and sustainable development, the market demand for amine foam delay catalysts is showing a rapid growth trend. This section will analyze the current market status and look forward to the future development direction.

4.1 Market status

At present, amine foam delay catalysts are mainly used in the production of polyurethane foam materials, especially in the fields of building insulation, car seats, home appliance insulation, etc. According to data from market research institutions, the global amine catalyst market size is about US$500 million in 2022, and is expected to reach US$800 million by 2028, with an average annual growth rate of about 8%. Among them, the Asia-Pacific region is a large market, accounting for about 40% of the world’s share, followed by North America and Europe.

Table 2: Global market distribution of amine foam delay catalysts (2022)

Region Market Share (%) Main application areas Main Manufacturers
Asia Pacific 40 Building insulation, home appliance insulation Bayer, BASF, Wanhua Chemistry
North America 30 Car seats and home appliances insulation DuPont, Dow Chemical, Huntsman
European Region 20 Building insulation, furniture manufacturing BASF, Covestro, Arkema
Other regions 10 Home appliance insulation and packaging materials LANXESS, Saudi Basic Industries

It can be seen from Table 2 that the Asia-Pacific region is a large market for amine catalysts, mainly due to the rapid development of the construction and home appliance industries in the region. In addition, the market demand in North America and Europe is also relatively strong, especially in the field of car seats and home appliance insulation. In the future, with the recovery of the global economy and technological advancement, the market demand for amine catalysts is expected to further expand.

4.2 Development trends

  1. Growing demand for environmentally friendly catalysts: With the increasing strictness of global environmental protection regulations, traditional organic tin catalysts have gradually been eliminated, and the demand for environmentally friendly amine catalysts has grown rapidly. In the future, the development of amine catalysts with low toxicity and good biodegradability will become an important development direction for the industry. For example, catalysts based on natural plant extracts have attracted more and more attention due to their superior environmental performance.

  2. Development of multifunctional catalysts: In order to meet the needs of different application scenarios, the research and development of multifunctional amine catalysts will become the focus of the future. This type of catalyst can not only delay the reaction, but also play multiple roles such as acceleration and toughening at different stages, thereby improving the overall performance of foam materials. For example, composite amine catalysts can delay the reaction at the beginning of foaming and accelerate the crosslinking reaction at the later stage, so that the foam material has higher strength and better toughness.

  3. Application of intelligent production technology: With the advent of the Industry 4.0 era, intelligent production technology will be widely used in the preparation and application of amine catalysts. By introducing technologies such as the Internet of Things, big data and artificial intelligence, automation and refined management of catalyst production can be achieved, thereby improving product quality and production efficiency. In addition, intelligent production can also monitor the reaction process in real time, adjust process parameters in time, and ensure that the performance of foam materials is excellent.

  4. Expansion of emerging markets: In addition to the traditional construction, automobile and home appliance fields, amine foam delay catalysts have broad application prospects in emerging markets. For example, in the fields of aerospace, medical equipment, sports equipment, etc., high-qualityThe increasing demand for foam materials provides new market opportunities for amine catalysts. In the future, with the rapid development of these fields, the application scope of amine catalysts will be further expanded.

V. Contributions in Sustainable Development

Amine foam delay catalysts have played an important role in promoting sustainable development, which is reflected in the following aspects:

  1. Energy saving and emission reduction: Amines catalysts can effectively improve the performance of polyurethane foam materials and reduce energy consumption and greenhouse gas emissions. For example, in the field of building insulation, foam materials prepared using highly efficient amine catalysts can significantly reduce the energy consumption of buildings and reduce carbon footprint. In addition, amine catalysts have superior environmental protection performance, can reduce the emission of harmful substances during the production process, and meet the requirements of green chemistry.

  2. Resource Recycling: The degradability of amine catalysts gives them unique advantages in resource recycling. Compared with traditional catalysts, amine catalysts can gradually decompose in the natural environment, reducing long-term pollution to the environment. In addition, biomass-based amine catalysts can also be prepared using renewable resources such as waste plant cellulose, realizing the recycling of resources and reducing dependence on fossil fuels.

  3. Environmental Protection: The low toxicity and good biodegradability of amine catalysts make them of great significance in environmental protection. Traditional organic tin catalysts may release harmful substances during production and use, causing harm to the environment and human health. However, amine catalysts will not cause such problems, which can effectively reduce pollution to soil, water and air and protect the ecological environment.

  4. Social and Economic Benefits: The widespread application of amine catalysts not only improves product quality and production efficiency, but also drives the development of related industries and creates a large number of employment opportunities. For example, in the fields of construction, automobiles, home appliances, etc., the application of amine catalysts has promoted the upgrading of the industrial chain and enhanced the competitiveness of enterprises. In addition, the environmentally friendly performance of amine catalysts is also in line with consumers’ green consumption concepts and helps promote the sustainable development of society.

VI. Conclusion and Outlook

To sum up, amine foam delay catalysts, as a new chemical additive, play an important role in the preparation of polyurethane foam materials. Its excellent delay effect, good temperature adaptability and environmental protection performance make it an important force in promoting sustainable development. In the future, with the increasing strictness of environmental protection regulations and the advancement of technology, the market demand for amine catalysts will continue to grow, and multifunctional, intelligent and environmentally friendly catalysts will become the development direction of the industry. In addition, amine catalysts have broad application prospects in emerging markets and are expected to bring innovation and change to more fields.

Looking forward, the research and application of amine foam delay catalysts will continue to deepen and make greater contributions to global sustainable development. By constantly exploring new catalyst structures and synthesis methods and developing more efficient and environmentally friendly catalyst products, we have reason to believe that amine catalysts will occupy an important position in the field of materials science in the future and create a better living environment for mankind.

admin