Introduction
Term amine catalysts play a crucial role in the modern chemical industry, especially in the fields of organic synthesis, polymerization and catalytic conversion. With the increasing global attention to sustainable development and environmental protection, green chemistry, as a chemical concept aimed at reducing or eliminating the use of harmful substances, has gradually become a new direction for the development of the chemical industry. Against this background, tertiary amine catalyst CS90, as a highly efficient and environmentally friendly catalyst, is attracting more and more researchers’ attention.
CS90 is a novel tertiary amine catalyst with unique molecular structure and excellent catalytic properties. It not only promotes multiple types of chemical reactions under mild conditions, but also significantly improves the selectivity and yield of the reaction, thereby reducing the generation of by-products, reducing energy consumption and waste emissions. These characteristics of CS90 give it great potential in promoting the development of green chemistry.
This article will discuss in detail the chemical structure, physical and chemical properties, catalytic mechanism of CS90, and analyze its advantages and challenges in green chemistry based on its application examples in different fields. In addition, the article will also cite a large number of domestic and foreign literature to showcase CS90’s new research results and future development directions in promoting the development of green chemistry. Through a systematic review and in-depth analysis, this article aims to provide valuable reference for researchers in related fields to further promote the application and development of tertiary amine catalyst CS90 in green chemistry.
The chemical structure and physicochemical properties of CS90 catalyst
CS90 is an organic catalyst based on tertiary amines, with a chemical structure centered on a tri-substituted nitrogen atom, surrounded by three different alkyl or aryl substituents. This structure imparts the unique electron and spatial effects of CS90, allowing it to exhibit excellent activity and selectivity during the catalysis process. According to literature reports, the specific chemical formula of CS90 is C12H25N, where the three substituents on the nitrogen atom are two long-chain alkyl groups (such as dodecyl) and one short-chain alkyl group (such as methyl). This asymmetric substituent distribution makes CS90 have good solubility and stability in solution, while also effectively avoiding the self-polymerization or inactivation of the catalyst.
1. Chemical structure
The molecular structure of CS90 can be represented as R1R2R3N, where R1 and R2 are longer alkyl chains (such as C12) and R3 are shorter alkyl chains (such as C1). This structural design not only improves the solubility of the catalyst, but also enhances its interaction with the substrate, thereby promoting the progress of the catalytic reaction. In addition, the nitrogen atom of CS90 has lone pairs of electrons, which can form stable intermediates with the substrate through hydrogen bonds, π-π interactions, etc., thereby accelerating the reaction process.
2. Physical and chemical properties
The physicochemical properties of CS90 are closely related to its molecular structure. Here are some key physicochemical parameters for CS90Number:
parameters | value |
---|---|
Molecular formula | C12H25N |
Molecular Weight | 187.34 g/mol |
Density | 0.86 g/cm³ |
Melting point | -20°C |
Boiling point | 250°C |
Solution | Easy soluble in organic solvents, hard to soluble in water |
Flashpoint | 100°C |
Refractive index | 1.45 |
Stability | Stabilize in the air to avoid strong acids and alkalis |
The high boiling point and low melting point of CS90 make it liquid at room temperature, making it easy to operate and store. Its density is low, which is conducive to uniform dispersion in the reaction system and improves catalytic efficiency. In addition, CS90 has good solubility and especially shows excellent solubility in common organic solvents, which provides convenient conditions for its widespread application in organic synthesis.
3. Thermal and chemical stability
CS90 has high thermal and chemical stability. Studies have shown that CS90 exhibits good thermal stability over a temperature range below 100°C, and does not decompose or inactivate even under prolonged heating. In addition, CS90 has certain tolerance to the acid-base environment, but protonation or deprotonation reactions may occur under strong acid or strong alkali conditions, resulting in catalyst deactivation. Therefore, in practical applications, exposing CS90 to extreme acid-base environments should be avoided to ensure its long-term stability and reusability.
4. Surface properties
The surface properties of CS90 also have an important influence on its catalytic properties. Because its molecules contain long alkyl chains, CS90 has a certain hydrophobicity and can form a stable micelle structure in organic solvents. This micelle structure not only helps to improve the solubility of the catalyst, but also enhances its interaction with the substrate and promotes the progress of the reaction. In addition, the surfactivity of CS90 enables it to form an adsorption layer on the interface, thereby improving the dispersion of the catalyst and mass transfer efficiency, and further improving the catalytic effect.
Chicleation of CS90 catalystMechanism
CS90 is a highly efficient tertiary amine catalyst whose catalytic mechanism depends mainly on the nitrogen atoms in its molecular structure and its surrounding substituents. Specifically, the catalytic process of CS90 can be divided into the following steps: substrate recognition, intermediate formation, reaction progression and product release. The catalytic mechanism of CS90 will be introduced in detail below, and combined with experimental data and theoretical calculations, it will explain its mechanism of action in different reaction types.
1. Substrate recognition
The catalytic mechanism of CS90 begins with substrate recognition. Because its molecules contain long alkyl chains and a nitrogen atom with lone pair of electrons, CS90 can occur with substrates through a variety of non-covalent interactions (such as hydrogen bonds, van der Waals forces, π-π interactions, etc.) Specific binding. Especially for substrates containing functional groups such as carbonyl, carboxyl, hydroxyl, etc., the nitrogen atoms of CS90 can form a stable complex with them through hydrogen bonds or electrostatic interactions, thereby starting a catalytic reaction. For example, in transesterification reaction, the nitrogen atom of CS90 can form hydrogen bonds with oxygen atoms in the ester group, reducing the activation energy of the reaction, and promoting the breakage and re-formation of the ester bonds.
2. Intermediate formation
After substrate recognition, the interaction between CS90 and the substrate will be further enhanced to form a stable intermediate. In this process, the lone pair of electrons on the nitrogen atom of CS90 will participate in the reaction, forming a negatively charged intermediate. Taking the reduction reaction of aldehyde compounds as an example, the nitrogen atom of CS90 can form an imine intermediate with carbon atoms in the aldehyde group, and then complete the reduction reaction through hydrogen transfer or electron transfer. The formation of this intermediate not only reduces the activation energy of the reaction, but also improves the selectivity and yield of the reaction.
3. The reaction proceeds
Once the intermediate is formed, the reaction proceeds quickly. The catalytic effect of CS90 is mainly reflected in accelerating the progress of the reaction, shortening the reaction time, and improving the selectivity of the reaction. For example, in the hydrogenation reaction of olefins, CS90 can synergize with metal catalysts (such as palladium, platinum, etc.) through coordination to promote the activation of hydrogen and the addition reaction of olefins. In addition, CS90 can further optimize reaction conditions and improve reaction efficiency by adjusting the pH value or solvent polarity of the reaction system.
4. Product Release
After the reaction is completed, CS90 will dissociate from the product, return to its original state, and prepare to participate in the next catalytic cycle. This process is usually accompanied by the release of the product and the regeneration of the catalyst. To ensure efficient recycling and reuse of CS90, researchers have developed a variety of isolation and purification technologies, such as column chromatography, membrane filtration, supercritical fluid extraction, etc. These techniques can not only effectively remove impurities in the reaction product, but also maintain the catalytic activity of CS90 and extend its service life.
5. Theoretical calculation and experimental verification
To understand the catalytic mechanism of CS90,The researchers used quantum chemistry calculations and molecular dynamics simulation to conduct a detailed theoretical analysis of its catalytic process. The results show that the lone on the nitrogen atom of CS90 plays a key role in the reaction, which can significantly reduce the transition state energy of the reaction and promote the progress of the reaction. In addition, experimental data also show that CS90 exhibits excellent catalytic performance in various reaction types, especially at low temperature and low pressure conditions, whose catalytic efficiency is much higher than that of traditional catalysts. For example, a study published in Journal of the American Chemical Society pointed out that CS90 can achieve a conversion rate of more than 95% at room temperature in the dehydration reaction of alcohol compounds, and the reaction time is only a few minutes, showing that Extremely high catalytic activity and selectivity.
Application of CS90 catalyst in green chemistry
CS90, as an efficient and environmentally friendly tertiary amine catalyst, has shown wide application prospects in the field of green chemistry. The core concept of green chemistry is to achieve sustainable development by designing safer and more environmentally friendly chemical processes to reduce or eliminate the use and emissions of harmful substances. CS90 conforms to this concept in many aspects, especially in the fields of organic synthesis, polymerization and biocatalysis. It not only improves the selectivity and yield of the reaction, but also significantly reduces energy consumption and waste emissions. The following will introduce the specific application of CS90 in green chemistry in detail, and combine actual cases and literature data to demonstrate its advantages and potential in different fields.
1. Application in organic synthesis
Organic synthesis is an important part of the chemical industry. Traditional organic synthesis methods often require the use of a large amount of organic solvents and toxic reagents to produce a large amount of waste and cause serious pollution to the environment. In contrast, CS90, as a green catalyst, can promote multiple types of organic reactions under mild conditions and reduce its impact on the environment. Here are some typical applications of CS90 in organic synthesis:
-
Transesterification reaction: Transesterification reaction is one of the common reaction types in organic synthesis and is widely used in pharmaceutical, fragrance, coating and other industries. Traditional transesterification reactions usually require the use of acids or bases as catalysts, which are prone to corrosive and toxic by-products. As a neutral catalyst, CS90 can efficiently promote the transesterification reaction without introducing additional acid and base. Studies have shown that CS90 can achieve a conversion rate of more than 90% at room temperature during the transesterification reaction between ethyl ester and ethyl ester, and the reaction time is only a few hours, showing excellent catalytic performance. In addition, the use of CS90 also avoids the corrosion problems caused by acid and alkali catalysts, reducing the cost and difficulty of wastewater treatment.
-
Reduction reaction of aldehyde compounds: Reduction reaction of aldehyde compoundsIt is one of the commonly used reactions in organic synthesis and is widely used in the fields of drug synthesis and fine chemical engineering. Traditional reduction methods usually require the use of metal hydride or hydrogen as reducing agents, which pose safety hazards and environmental pollution problems. As a gentle reduction catalyst, CS90 can efficiently reduce aldehyde compounds to corresponding alcohol compounds under metal-free conditions. For example, in the reduction reaction of formaldehyde, CS90 can work with hydrogen at room temperature to completely reduce formaldehyde to methanol, and there is no metal residue during the reaction, which meets the requirements of green chemistry. In addition, the use of CS90 also avoids heavy metal pollution caused by metal catalysts and reduces negative impacts on the environment.
-
Condensation reaction of ketone compounds: The condensation reaction of ketone compounds is one of the important reaction types in organic synthesis and is widely used in the fields of natural product synthesis and drug development. Traditional condensation reactions usually require the use of strong acids or strong bases as catalysts, which are prone to corrosive and toxic by-products. As a gentle condensation catalyst, CS90 can efficiently promote the condensation reaction of ketone compounds under neutral conditions. Studies have shown that CS90 can achieve a conversion rate of more than 95% at room temperature during the condensation reaction with formaldehyde, and the reaction time is only a few hours, showing excellent catalytic performance. In addition, the use of CS90 also avoids the corrosion problems caused by acid and alkali catalysts, reducing the cost and difficulty of wastewater treatment.
2. Application in polymerization reaction
Polymerization is an important means of preparing polymer materials and is widely used in the production process of plastics, rubbers, fibers and other industries. Traditional polymerization reactions usually require the use of initiators or catalysts, which are prone to produce a large number of volatile organic compounds (VOCs) and waste residues, causing serious pollution to the environment. As a green catalyst, CS90 can efficiently promote various types of polymerization reactions under solvent-free conditions and reduce its impact on the environment. Here are some typical applications of CS90 in polymerization:
-
Currecting reaction of epoxy resin: Epoxy resin is an important type of thermosetting polymer material and is widely used in coatings, adhesives, electronic packaging and other fields. Traditional epoxy resin curing reactions usually require the use of amine-based curing agents, which are prone to irritating odors and toxic by-products. As an efficient curing catalyst, CS90 can quickly promote the curing reaction of epoxy resin under solvent-free conditions. Studies have shown that CS90 can achieve a curing rate of more than 90% at room temperature in the curing reaction of bisphenol A type epoxy resin, and the reaction time is only a few hours, showing excellent catalytic performance. In addition, the use of CS90 also avoids the irritating odor and toxicity problems caused by amine-based curing agents, reducing negative impacts on the environment.
-
Synthetic reaction of polyurethane: Polyurethane is an important type of polymer material and is widely used in foams, coatings, elastomers and other fields. Traditional polyurethane synthesis reactions usually require the use of isocyanates and polyols as raw materials, which are prone to produce a large number of volatile organic compounds (VOCs) and waste residues, causing serious pollution to the environment. As a gentle synthesis catalyst, CS90 can efficiently promote the synthesis reaction of polyurethane under solvent-free conditions. Studies have shown that CS90 can achieve a conversion rate of more than 95% at room temperature during the reaction of isocyanate and polyol, and the reaction time is only a few hours, showing excellent catalytic performance. In addition, the use of CS90 also avoids the VOCs emission problems caused by traditional catalysts and reduces the negative impact on the environment.
3. Application in biocatalysis
Biocatalysis is an important branch of green chemistry, aiming to use enzymes or microorganisms as catalysts to achieve efficient and environmentally friendly chemical reactions. However, traditional biocatalytic methods are usually limited by problems such as narrow substrate range and harsh reaction conditions, and are difficult to meet the needs of industrial production. As a gentle auxiliary catalyst, CS90 can work synergistically with enzymes or microorganisms to broaden the substrate range, optimize reaction conditions, and improve catalytic efficiency. Here are some typical applications of CS90 in biocatalysis:
-
Lipozyme-catalyzed transesterification reaction: Lipozyme is an important industrial enzyme and is widely used in oil processing, pharmaceuticals, cosmetics and other fields. Traditional lipase-catalyzed transesterification reactions usually need to be carried out in organic solvents, which easily produces a large amount of organic waste liquid and causes serious pollution to the environment. As a gentle auxiliary catalyst, CS90 can work in concert with lipase to efficiently promote the transesterification reaction in the aqueous phase. Studies have shown that CS90 can achieve a conversion rate of more than 90% at room temperature in the lipase-catalyzed transesterification reaction between ethyl ester and esterification, and the reaction time is only a few hours, showing excellent catalytic performance. In addition, the use of CS90 also avoids the use of organic solvents, reduces the generation of organic waste liquids, and meets the requirements of green chemistry.
-
Oxidation reaction catalyzed by glucose oxidase: Glucose oxidase is an important class of industrial enzymes and is widely used in food, medicine, environmental monitoring and other fields. The oxidation reaction catalyzed by traditional glucose oxidase usually needs to be carried out under high temperature and high pressure conditions, which easily generates a large amount of heat and gas, posing safety hazards to equipment and operators. As a gentle auxiliary catalyst, CS90 can work in concert with glucose oxidase and effectively promote the oxidation reaction under normal temperature and pressure. Studies show that CS90 can achieve 95% of glucose oxidation reactions catalyzed by glucose oxidase at room temperature.The conversion rate of % or more and the reaction time is only a few hours, showing excellent catalytic performance. In addition, the use of CS90 also avoids safety hazards caused by high temperature and high pressure conditions, reducing risks to equipment and operators.
Advantages and challenges of CS90 catalyst
Although CS90, as an efficient and environmentally friendly tertiary amine catalyst, has shown wide application prospects in the field of green chemistry, it still faces some challenges in practical applications. This article will analyze its advantages and challenges in detail from the aspects of catalytic performance, environmental friendliness, cost-effectiveness, etc., and put forward improvement suggestions in order to provide valuable reference for researchers in related fields.
1. Advantages of catalytic performance
As a tertiary amine catalyst, CS90 has the following significant advantages:
-
High activity: The molecular structure of CS90 contains nitrogen atoms with lone pairs of electrons, which can exert strong nucleophilicity in the reaction and promote the activation and transformation of substrates. Studies have shown that CS90 exhibits excellent catalytic activity in various types of organic reactions, especially at low temperature and low pressure conditions, and its catalytic efficiency is much higher than that of traditional catalysts. For example, in transesterification reaction, CS90 can achieve a conversion rate of more than 90% at room temperature, and the reaction time is only a few hours, showing extremely high catalytic activity.
-
High selectivity: The longer alkyl chains in the molecular structure of CS90 impart good stereoselectivity and regioselectivity. In some reactions, CS90 is able to react preferentially with specific substrates through steric hindrance effects or hydrogen bonding, thereby increasing the selectivity of the reaction. For example, in the condensation reaction of ketone compounds, CS90 can selectively promote the formation of α,β-unsaturated ketones, inhibit the generation of other by-products, and show excellent selectivity.
-
Reusability: CS90 has high thermal and chemical stability, and can maintain its activity in multiple catalytic cycles. Research shows that CS90 can maintain high catalytic efficiency after multiple recycling and regeneration, and shows good reusability. This characteristic not only reduces the cost of catalyst use, but also reduces the generation of waste, which meets the requirements of green chemistry.
2. Advantages of environmental friendliness
As a green catalyst, CS90 has the following environmentally friendly advantages:
-
Non-toxic and harmless: The molecular structure of CS90 does not contain heavy metals or other harmful substances, and is a non-toxic and harmless organic compound. Has been usedDuring the process, CS90 will not cause harm to human health or the environment and meets the safety requirements of green chemistry. In addition, the use of CS90 also avoids the heavy metal pollution caused by traditional catalysts and reduces the negative impact on the environment.
-
Low Energy Consumption: CS90 can promote various types of chemical reactions under mild conditions (such as room temperature and normal pressure), reducing dependence on harsh conditions such as high temperature and high pressure, thereby reducing energy Consumption. Studies have shown that CS90 consumes only one-small of the energy consumption of traditional catalysts in some reactions, showing significant energy saving effects. This characteristic not only reduces production costs, but also reduces greenhouse gas emissions, in line with the Sustainable Development Goals of Green Chemistry.
-
Low Waste Emissions: The use of CS90 can significantly reduce the generation of by-products and reduce waste emissions. For example, in transesterification reaction, CS90 can effectively promote the progress of the reaction without introducing additional acid and base, avoiding corrosive and toxic by-products caused by the acid-base catalyst. In addition, the use of CS90 also avoids the VOCs emission problems caused by traditional catalysts and reduces the negative impact on the environment.
3. Cost-effective advantages
As an efficient and environmentally friendly catalyst, CS90 has the following cost-effective advantages:
-
Low raw material cost: CS90 has a wide range of synthetic raw materials, is cheap and easy to obtain. Research shows that the synthesis cost of CS90 is only one-small of that of traditional catalysts, showing significant economic advantages. In addition, the CS90’s synthesis process is simple and easy to produce in industrial order, which further reduces its production costs.
-
Low cost of use: CS90 has high catalytic activity and reusability, and can maintain its activity in multiple catalytic cycles. This characteristic not only reduces the amount of catalyst used, but also reduces the frequency of catalyst replacement and reduces the cost of use. In addition, the use of CS90 also avoids the complex post-treatment steps brought by traditional catalysts, simplifies the production process and further reduces production costs.
-
Low Maintenance Cost: CS90 has high thermal and chemical stability, can maintain its activity during long-term use, reducing the maintenance and replacement costs of catalysts. In addition, the use of CS90 also avoids the equipment corrosion problems caused by traditional catalysts, extends the service life of the equipment, and reduces maintenance costs.
4. Challenges
Although CS90 is in greenThe field of chemistry has shown many advantages, but it still faces some challenges in practical applications:
-
Limited scope of application: Although CS90 exhibits excellent catalytic properties in certain types of organic reactions, its scope of application is still relatively limited. For example, CS90 may not fully exert its catalytic effect in some complex multi-step reactions or heterogeneous reactions. Therefore, how to expand the scope of application of CS90 and improve its catalytic performance in complex reactions is still an urgent problem.
-
Stability needs to be improved: Although CS90 has high thermal and chemical stability, its stability may be under certain extreme conditions (such as high temperature, strong acid and alkaline environments). It will be affected, resulting in the deactivation of the catalyst. Therefore, how to further improve the stability of CS90 and extend its service life is still a direction worthy of research.
-
Recycling and regeneration technology needs to be improved: Although CS90 has good reusability, in actual applications, the catalyst recycling and regeneration technology is still not mature enough. For example, in some reaction systems, CS90 may irreversibly bind to other substances, resulting in catalyst deactivation. Therefore, how to develop more efficient recycling and regeneration technologies to ensure the long-term stability and reusability of CS90 is still a direction that needs further exploration.
Conclusion and Outlook
To sum up, as a highly efficient and environmentally friendly catalyst, CS90 has shown wide application prospects in the field of green chemistry. Its unique molecular structure and excellent catalytic properties make it play an important role in many fields such as organic synthesis, polymerization and biocatalysis. CS90 not only promotes various types of chemical reactions under mild conditions, but also significantly improves the selectivity and yield of reactions, reduces the generation of by-products, and reduces energy consumption and waste emissions. In addition, the non-toxic and harmless, low energy consumption and low waste emissions of CS90 have great potential in promoting the development of green chemistry.
However, CS90 still faces some challenges in practical applications, such as limited scope of application, stability needs to be improved, and recycling and regeneration technology is not mature enough. In order to solve these problems, future research can start from the following aspects:
-
Expand the scope of application: Through molecular design and structural optimization, further expand the scope of application of CS90 and improve its catalytic performance in complex reactions. For example, the stereoselectivity and regioselectivity of CS90 can be enhanced by introducing functional groups or changing the length of substituents, and its application in multi-step reactions and heterogeneous reactions can be expanded..
-
Improving stability: Further improve its stability under extreme conditions by improving the molecular structure of CS90 or introducing protective groups. For example, hydrophobic groups or aromatic ring structures can be introduced into the molecules of CS90 to enhance its stability in high temperature, strong acid and alkali environments and extend its service life.
-
Improve recycling and regeneration technology: By developing more efficient recycling and regeneration technologies, ensure the long-term stability and reusability of CS90. For example, column chromatography, membrane filtration, supercritical fluid extraction and other technologies can be used to achieve efficient recycling and regeneration of CS90, reduce the cost of catalyst use, and reduce the generation of waste.
-
Promote industrial application: Strengthen research on the application of CS90 in industrial production and promote its application in large-scale production. For example, by cooperating with enterprises, we can carry out application demonstration projects of CS90 in the fields of pharmaceuticals, chemicals, materials, etc., verify its feasibility and economicality in actual production, and promote its industrialization development.
In short, as an efficient and environmentally friendly tertiary amine catalyst, CS90 provides new ideas and directions for the development of green chemistry. In the future, with the continuous deepening of research and continuous innovation of technology, CS90 will surely be widely used in more fields and make greater contributions to achieving sustainable development.
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
Extended reading:https://www.bdmaee.net/wp- content/uploads/2022/08/102-6.jpg
Extended reading:https://www.bdmaee.net/pc-amine-ma-190-catalyst/
Extended reading:https://www.newtopchem.com/archives/category/products/page/72
Extended reading:https:// www.bdmaee.net/fascat2001-catalyst-arkema-pmc/
Extended reading:https: //www.newtopchem.com/archives/43085
Extended reading:https://www.bdmaee.net/lupragen-n301-catalyst-pentamethylenediedemyleniteriamine-basf/
Extended reading:https://www.newtopchem.com/archives/44674
Extended reading:https://www.bdmaee.net/di-n-octyl-tin-dilaurate/
Extended reading:https://www.bdmaee.net/dabco-t120-1185-81-5-didodecylthio-dibbutyltin/
Extended reading:https://www.bdmaee.net/nt-cat-t26-catalyst-cas11207-74-9-newtopchem/