1 – Amine Catalysts https://www.newtopchem.com The Leading Supplier of China Amine Catalysts Tue, 11 Jun 2024 10:14:36 +0000 zh-CN hourly 1 https://wordpress.org/?v=6.1.7 https://www.newtopchem.com/wp-content/uploads/2023/12/1.jpg 1 – Amine Catalysts https://www.newtopchem.com 32 32 1,2-dibromo-1,1-dichloroethane https://www.newtopchem.com/archives/49699 Tue, 11 Jun 2024 10:14:36 +0000 http://www.newtopchem.com/archives/49699 1,2-dibromo-1,1-dichloroethane structural formula

Structural formula

Business number 01K6
Molecular formula C2H2Br2Cl2
Molecular weight 256.75
label

1,2-Dibromo-2,2-dichloroethane,

1,2-dibromo-1,1-dichloro-ethane

Numbering system

CAS number:75-81-0

MDL number:MFCD00053228

EINECS number:200-904-7

RTECS number:None

BRN number:None

PubChem ID:None

Physical property data




Toxicological data

1, acute toxicity


Mouse caliberLD50:205mg/kg


Large Rat InhalationLC50: 83 ppm/6H


Rabbit skinLD50:500mg/kg

Ecological data

None

Molecular structure data

5. Molecular property data:


1. Molar refractive index: 36.44


2. Molar volume (m3/mol):110.7


3. isotonic specific volume (90.2K):287.9


4. Surface Tension (dyne/cm):45.7


5. Polarizability10-24cm3):14.44

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): 3

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 0

4. Number of rotatable chemical bonds: 1

5. Number of tautomers: none

6. Topological molecule polar surface area 0

7. Number of heavy atoms: 6

8. Surface charge: 0

9. Complexity: 44.8

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

None

Storage method

None

Synthesis method

None

Purpose

None

extended-reading:https://www.bdmaee.net/cas-1067-33-0-2/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/37-1.jpg
extended-reading:https://www.bdmaee.net/dioctyltin-dilaurate-dotdl/
extended-reading:https://www.morpholine.org/potassium-acetate-glycol-solution-polycat-46/
extended-reading:https://www.cyclohexylamine.net/reactive-amine-catalyst-pt305-dabco-amine-catalyst/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2020/06/66.jpg
extended-reading:https://www.newtopchem.com/archives/1118
extended-reading:https://www.newtopchem.com/archives/category/products/page/114
extended-reading:https://www.newtopchem.com/archives/43920
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/Trimethylhydroxyethyl-ethylenediamine-CAS-2212-32-0-PC-CAT-NP80.pdf

]]>
1,2-propanediol https://www.newtopchem.com/archives/49526 Mon, 03 Jun 2024 02:22:52 +0000 http://www.newtopchem.com/archives/49526 1,2-propanediol structural formula

Structural formula

Business number 018S
Molecular formula C3H8O2
Molecular weight 76.10
label

propylene glycol,

1,2-dihydroxypropane,

α-propylene glycol,

Methyl glycol,

propylene glycol,

One propyl alcohol,

1,2-Dihydroxypropanol,

Propylene glycol,

1,2-Dihydroxy-propane,

Methyl glycol,

Aliphatic alcohols, ethers and their derivatives

Numbering system

CAS number:57-55-6

MDL number:MFCD00064272

EINECS number:200-338-0

RTECS number:TY2000000

BRN number:1340498

PubChem number:24864713

Physical property data

1. Properties: Colorless, viscous and stable water-absorbing liquid, almost tasteless and odorless, flammable, low toxicity.

2. Boiling point (ºC, 101.3kPa): 187.3

3. Melting point (ºC, pouring point): -60

4. Relative density (g /mL, 20/20ºC): 1.0381

5. Relative density (20℃, 4℃): 1.0362

6. Refractive index (n20ºC): 1.4329

7. Viscosity (mPa·s, 0ºC): 243

8. Viscosity (mPa·s, 20ºC): 56.0

9. Viscosity (mPa·s, 40ºC) : 18

10. Flash point (ºC, closed): 98.9

11. Flash point (ºC, open): 107

12. Fire point (ºC ): 421.1

13. Heat of combustion (KJ/mol, constant pressure): 1827.5

14. Heat of combustion (KJ/mol, constant volume): 1825.0

15. Heat of combustion (KJ/mol, 20ºC, 101.3kPa): 1853.1

16. Heat of evaporation (KJ/kg): 538.1

17. Heat of generation (KJ/ mol, 20ºC): 500.3

18. Specific heat capacity (KJ/(kg·K), 20ºC, constant pressure): 2.48

19. Critical temperature (ºC): 351

20. Critical pressure (MPa): 5.9

21. Thermal conductivity (W/(m·K)): 0.217714

22. Lower explosion limit (% ,V/V): 2.6

23. Explosion upper limit (%,V/V): 12.5

24. Volume expansion coefficient (K-1 , 20ºC): 0.000695

25. Volume expansion coefficient (K-1, 55ºC): 0.000743

26. Vapor pressure (kPa, 55ºC): 0.19

27. Solubility: can be dissolved with water and ethanolMiscible with various organic solvents such as ether, chloroform, and acetone. Although its solubility in hydrocarbons, chlorinated hydrocarbons, and grease is small, its solubility is stronger than that of ethylene glycol.

28. Relative density (25℃, 4℃): 1.0328

29. Refractive index at room temperature (n25): 1.4314

30. Solubility parameter (J·cm-3)0.5: 29.516

31. van der Waals area (cm2 ·mol-1): 6.960×109

32. van der Waals volume (cm3·mol-1): 46.760

33. Gas phase standard combustion heat (enthalpy) (kJ·mol-1): -1902.55

34. Gas phase standard claimed heat (enthalpy) (kJ·mol-1): -421.29

35. Liquid phase standard combustion heat (enthalpy) (kJ ·mol-1): -1838.14

36. Liquid phase standard claims heat (enthalpy) (kJ·mol-1): -485.72

37. Liquid phase standard hot melt (J·mol-1·K-1): 189.9

Toxicological data

1. Toxicity classification Low toxicity2. Acute toxicity Oral – Rat LD50: 20000 mg/kg; Oral – Mouse LC50: 32000 mg/kg. 3. Irritation data Eyes – Rabbit 100 mg Mild 4. Low toxicity. It has minimal toxicity and irritation. The oral LD50 in rats is 32.5mL/kg. However, it is hemolytic and should not be used for intravenous injection. Like ethylene glycol, it carries the same risk of causing kidney disorders when added to food and drinks. Therefore some countries have banned its use in the food industry.

Ecological data

None

Molecular structure data

1. Molar refractive index: 18.97

2. Molar volume (cm3/mol): 73.4

3. Isotonic specific volume (90.2K ): 182.3

4. Surface tension (dyne/cm): 38.0

5. Polarizability (10-24cm3): 7.52

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): None

2. Number of hydrogen bond donors: 2

3. Number of hydrogen bond acceptors: 2

4. Number of rotatable chemical bonds: 1

5. Number of tautomers: none

6. Topological molecule polar surface area 40.5

7. Number of heavy atoms: 5

8. Surface charge: 0

9. Complexity: 20.9

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 1

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

1. Flammable liquids. It is hygroscopic and non-corrosive to metals. It reacts with dibasic acid to form polyester, reacts with nitric acid to form nitrate ester, and reacts with hydrochloric acid to form chlorohydrin. Heating with dilute sulfuric acid at 170°C converts it into propionaldehyde. Oxidation with nitric acid or chromic acid produces glycolic acid, oxalic acid, acetic acid, etc. Reacts with aldehydes to form acetal. Dehydration of 1,2-propanediol produces propylene oxide or polyethylene glycol.

2.Its toxicity and irritation are very small, and no victims have been found so far. Rats were given LD507000~8000mg/kg by intravenous injection and intraperitoneal injection, and LD502800mg/kg by mouth. However, there are also reports that when too high a dose is added to food and beverages, it may cause fatal drowsiness and kidney disorders.

3. Exist in tobacco leaves and smoke.
 

Storage method

1. This product should be sealed and stored in a cool and dry place. Keep away from fire and heat sources. It can be stored in containers made of iron, mild steel, copper, tin, stainless steel or resin-coated containers.

2. Although this product will not spontaneously ignite, it is combustible. It will not deteriorate after long-term storage, but it will absorb moisture when opened. Storage and transportation containers should be made of galvanized iron drums, aluminum or stainless steel. Store and transport according to general regulations on low-toxic chemicals.

Synthesis method

1. Propylene oxide direct hydration method is a pressurized non-catalytic hydrolysis method. It is produced by direct hydration of propylene oxide and water at 150-160°C and 0.78-0.98MPa pressure. The reaction product is evaporated and distilled to obtain the finished product. 2. Propylene oxide indirect hydration method is produced by indirect hydration of propylene oxide and water using sulfuric acid as a catalyst have to. 3. Direct catalytic oxidation of propylene. 4. Using 1,2-dichloropropane as raw material This method has two process routes: 1. The first is that dichloropropane is directly hydrolyzed into propylene glycol in a weak alkali aqueous solution; the second is that dichloropropane reacts with carboxylate to first form an ester, and the ester is then hydrolyzed into propylene glycol. (1) Direct hydrolysis process: Add 1,2-dichloropropane, water, sodium bicarbonate and cetyltributylphosphonium bromide into the reaction kettle, and react at 100°C under a carbon dioxide partial pressure of 1.0MPa 18h, 80% propylene glycol is obtained. Control the feeding speed of dichloropropane, that is, the feeding speed is fast at high temperature and slow at low temperature. Example: Add 60g calcium carbonate and 150g water into a 300ml autoclave, stir and heat to 230°C, continuously add dichloropropane at a rate of 0.03g/(min·100gH2O) for 11.5h; continue stirring at this temperature for 30min, and then quench At room temperature, the propylene glycol yield is about 95%. By controlling the temperature within 130-300°C and changing the feed rate of dichloropropane accordingly, the yield of propylene glycol can reach over 95%. (2) Two-step hydrolysis process: The raw materials are first reacted in a kettle reactor. After the dichloropropane reaches a certain conversion rate, the material is then pumped into a plug flow reactor to continue the reaction, and finally hydrolyzed into propylene glycol. Example: Add 606kg of dichloropropane into a 2 cubic meter reaction kettle, then add 800kg of sodium acetate, 556kg of 1,2-propanediol, 10kg of acetic acid and 1kg of water, stir and raise the temperature to 180°C, cool to 120°C after 4 hours, and extract the material. After the preheater is heated to 180°C, it passes through a plug flow reactor with a length of 400m, an inner diameter of 25mm, and a volume of 230L at a speed of 500L/h. The product is collected in the second stirred tank and cooled to room temperature. The analyzed product is: 44kg dichloropropane, 334kg propylene glycol, 32kg sodium acetate, 44kg acetic acid, 234kg 1,2-diacetoxypropane, 693kg propylene glycol monoacetate, 45kg 1-chloropropene, 547kg NACL and 1kg water.

Purpose

1. Propylene glycol is an important raw material for unsaturated polyester, epoxy resin, polyurethane resin, plasticizer, and surfactant. Its usage accounts for about 45% of the total consumption of propylene glycol. This unsaturated polyol Esters are used extensively in surface coatings and reinforced plastics. Propylene glycol is widely used as a hygroscopic agent, antifreeze, lubricant and solvent in the food, pharmaceutical and cosmetic industries due to its good viscosity, hygroscopicity and non-toxic properties. In the food industry, propylene glycol reacts with fatty acids to form propylene glycol fatty acid esters, which are mainly used as food emulsifiers; propylene glycol is an excellent solvent for condiments and pigments. Due to its low toxicity, it is used as a solvent for spices and food colorings in the food industry. Propylene glycol is commonly used in the pharmaceutical industry as a solvent, softener and excipient in the manufacture of various ointments and ointments. In the pharmaceutical industry, it is used as a solvent for blending agents, preservatives, ointments, vitamins, penicillins, etc. Because propylene glycol has good miscibility with various fragrances, it is also used as a solvent and softener in cosmetics. Propylene glycol is also used as a tobacco humidifier, antifungal agent, food processing equipment lubricant, and solvent for food marking ink. Aqueous solutions of propylene glycol are effective antifreeze agents. It is also used as tobacco wetting agent, antifungal agent, fruit ripening preservative, antifreeze and heat carrier.

2.Used in organic synthesis as solvent, dehydrating agent, plasticizer, antifreeze, and gas chromatography fixative.

3.Commonly used organic synthetic raw materials for the manufacture of unsaturated polyester resin. It can also be used as emulsifier, preservative and antifreeze. It is also used in the manufacture of alkyd resins, polypropylene glycol, plasticizers, surfactants and lubricants. Due to its good hygroscopicity and low toxicity, it is used in the pharmaceutical industry as a solvent for blenders, preservatives, ointments, ointments, pills and vitamins, as well as softeners and excipients. Used as a solvent for spices, condiments and food colorings in the food industry. It is also used as tobacco humidifier, antifungal agent, fruit ripening preservative, coating film-forming additive, antifreeze and heat transfer medium. It is also often used as a substitute for ethanol and glycerin, and can be used as a wetting agent in combination with glycerin or sorbitol in toothpaste and cosmetics.

extended-reading:https://www.bdmaee.net/cas-1696-20-4/
extended-reading:https://www.cyclohexylamine.net/addocat-106-teda-l33b-dabco-polycat/
extended-reading:https://www.newtopchem.com/archives/779
extended-reading:https://www.bdmaee.net/polyurethane-rigid-foam/
extended-reading:https://www.newtopchem.com/archives/573
extended-reading:https://www.newtopchem.com/archives/39978
extended-reading:https://www.newtopchem.com/archives/206
extended-reading:https://www.bdmaee.net/cas-108-01-0-2/
extended-reading:https://www.newtopchem.com/archives/40383
extended-reading:https://www.cyclohexylamine.net/dabco-ne500-non-emission-amine-catalyst-ne500/

]]>
1,2-propylene oxide https://www.newtopchem.com/archives/49504 Mon, 03 Jun 2024 02:00:19 +0000 http://www.newtopchem.com/archives/49504 1,2-propylene oxide structural formula

Structural formula

Business number 01JR
Molecular formula C3H6O
Molecular weight 58.08
label

propylene oxide,

Epoxy propylene,

Propylene oxide,

propylene oxide,

Methyl ethylene oxide,

Propylene Oxide,

Aliphatic alcohols, ethers and their derivatives

Numbering system

CAS number:75-56-9

MDL number:MFCD00005126

EINECS number:200-879-2

RTECS number:TZ2975000

BRN number:79763

PubChem number:24880314

Physical property data

1. Properties: colorless liquid with an ether-like odor. [1]

2. Melting point (℃): -112[2]

3. Boiling point (℃): 34[3]

4. Relative density (water = 1): 0.83[4]

5. Relative vapor Density (air=1): 2.0[5]

6. Saturated vapor pressure (kPa): 71.7 (25℃)[6]

7. Heat of combustion (kJ/mol): -1755.8[7]

8. Critical temperature (℃): 209.1[8]

9. Critical pressure (MPa): 4.93[9]

10. Octanol/water partition coefficient: 0.03 [10]

11. Flash point (℃): -37 (CC); -28.8 (OC) [11]

12. Ignition temperature (℃): 449[12]

13. Explosion upper limit (%): 36.0[13]

14. Lower explosion limit (%): 2.3[14]

15. Solubility: soluble in water, miscible in methanol, ether, acetone, benzene, tetracycline Most organic solvents such as carbon chloride. [15]

16. Viscosity (mPa·s, 0ºC): 0.410

17. Viscosity (mPa·s, 20ºC): 0.327

18. Heat of fusion (KJ/mol): 6.5

19. Specific heat capacity (KJ/(kg·K), 15ºC, constant pressure): 1.95

20 .Body expansion coefficient (K-1, liquid): 0.00213

21. Combustion range in air (ml/100ml): 2.1~2.15

22 .Critical density (g·cm-3): 0.305

23. Critical volume (cm3·mol-1): 190

24. Critical compression factor: 0.245

25. Eccentricity factor: 0.271

26. Lennard-Jones parameter (A): 4.8515

27. Lennard-Jones parameter (K): 239.00

28. Solubility parameter (J·cm-3)0.5: 19.110

29. van der Waals area (cm2·mol-1): 4.640×109

30. van der Waals volume (cm3·mol-1): 34.400

31. Gas phase standard heat of combustion (Enthalpy) (kJ·mol-1): -1943.34

32. The gas phase standard claims heat (enthalpy) (kJ·mol-1) : -94.68

33. Gas phase standard entropy (J·mol-1·K-1): 281.15

34 .Gas phase standard free energy of formation (kJ·mol-1): -25.1

35. Gas phase standard hot melt (J·mol-1· K-1): 72.55

36. Liquid phase standard combustion heat (enthalpy) (kJ·mol-1): -1915.44

37. Liquid phase standard claims heat (enthalpy)( kJ·mol-1): -122.59

38. Liquid phase standard entropy (J·mol-1·K– 1): 196.27

39. Liquid phase standard free energy of formation (kJ·mol-1): -28.66

40. Liquid Phase standard hot melt (J·mol-1·K-1): 122.5

Toxicological data

1. Acute toxicity[16]

LD50: 380mg/kg (rat oral); 1245mg/kg (rabbit transdermal)

LC50: 4000ppm (rat inhalation, 4h); 4127mg/m3 (mouse inhalation, 4h)

2. Irritation[17]

Rabbit transdermal: 50mg (6min), severe irritation; 415mg , moderate stimulation (open stimulation test).

Rabbit eye: 20mg (2h), moderate irritation.

3. Subacute and chronic toxicity[18] 0.3g/kg by gavage, 5 times a week, 18 times, the rats lost weight, suffered gastric irritation and liver damage.

4. Mutagenicity[19] Microbial mutagenicity: Salmonella typhimurium 350μg/dish. DNA damage: E. coli 1μmol/L. Dominant lethal experiment: rats inhaled 300ppm (5d) (intermittent). Cytogenetic analysis: human lymphocytes 1850 μg/L. Sister chromatid exchange: human lymphocytes 25,000 ppm.

5. Teratogenicity[20] The lowest toxic dose of inhalation (TCLo) in rats 7~16 days after pregnancy 500ppm (7h), causing developmental malformations of the musculoskeletal system and craniofacial area (including nose and tongue).

6. Carcinogenicity[21] IARC Carcinogenicity Comment: G2B, suspected human carcinogen.

7. Others[22] The lowest inhalation toxic concentration in rats (TCLo): 500ppm (7h) (pregnant 7 to 16 days after administration), it can cause embryotoxicity and abnormal musculoskeletal development.

Ecological data

1. Ecotoxicity[23]

LC50: 170mg/L (24h) (goldfish)

TLm: 141mg/L (96h) (mosquito fish, static);

215mg/L (96h) (bluegill sunfish, static)

2. Biodegradability[24] MITI-I test, initial concentration 100ppm, sludge concentration 30ppm, 96% degradation after 2 weeks.

3. Non-biodegradability[25]

In the air, when hydroxyl groups are free When the base concentration is 5.00×105 pieces/cm3, the degradation half-life is 30 days (theoretical).

At 25℃, when the pH value is 7~9.5, the hydrolysis half-life is 11.6d and 6.6d respectively (theoretical).

Molecular structure data

1. Molar refractive index: 15.53

2. Molar volume (cm3/mol): 64.2

3. Isotonic specific volume (90.2K ): 144.0

4. Surface tension (dyne/cm): 25.2

5. Polarizability (10-24cm3): 6.15

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): None

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 1

4. Number of rotatable chemical bonds: 0

5. Number of tautomers: none

6. Topological molecule polar surface area 12.5

7. Number of heavy atoms: 4

8. Surface charge: 0

9. Complexity: 26.5

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 1

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

1. Low boiling flammable liquid with ether smell. The industrial product is a racemic mixture of two optical isomers. Propylene oxide is a flammable and explosive chemical and its vapors will decompose. Excessive amounts of acidic salts (such as tin chloride, zinc chloride), alkalis, and tertiary amines that may contaminate propylene oxide should be avoided. Non-corrosive to metals. Due to its effect on certain rubbers and plastics, care should be taken when selecting gaskets and valves. Due to its low boiling point, high volatility, flammability, and active chemical properties, care should be taken to prevent it from being close to sparks, static electricity, heat sources, acids, alkali, etc. Partially miscible with water [solubility in water at 20°C is 40.5% (weight); solubility of water in propylene oxide is 12.8% (weight)], miscible with ethanol and ether, and with methylene chloride, pentane, and pentene , cyclopentane, cyclopentene, etc. form a binary azeotrope.

2. It has extremely active chemical properties, especially it can react with compounds containing active hydrogen to generate various derivatives. For example, it reacts with water to form 1,2-propanediol; reacts with ammonia to form isopropanolamine; reacts with alcohol to form hydroxy ether; reacts with fatty acid to form hydroxy ester; reacts with hydrogen halide to form halohydrin; reacts with propylene glycol to form polypropylene glycol ; Oxidation generates acetic acid; reacts with glycerin to generate polyether triol; reacts with carboxylic acid to generate ester, etc. When it passes through pumice at 500°C, it is partially rearranged to produce acetone and propionaldehyde. It reacts with chlorine in anhydrous state to generate chloroacetone and 1-chloro-2-propanol. Acetic acid is produced during oxidation, and isopropanol is produced by reduction with sodium amalgam.

3. Stability[26] Stable

4. Incompatible materials[27] Acids, alkalis, strong oxidants. Anhydrous chlorides of iron, tin and aluminum, peroxides of iron and aluminum, ammonia, chlorosulfonic acid, hydrochloric acid, hydrogen fluoride, nitric acid, sulfuric acid, fuming sulfuric acid, etc.

5. Avoid Contact conditions[28] Heating

6. Polymerization hazard[29] No polymerization p>

Storage method

1. Storage precautions [30] Store in a cool, ventilated warehouse. The storage temperature should not exceed 29°C. Keep away from fire and heat sources. Keep container tightly sealed. They should be stored separately from oxidants, acids, and alkalis, and avoid mixed storage. Use explosion-proof lighting and ventilation facilities. It is prohibited to use mechanical equipment and tools that are prone to sparks. The storage area should be equipped with emergency release equipment and suitable containment materials.

2. Propylene oxide is a low-boiling, flammable liquid. Its vapor can spontaneously ignite or explode in the air. It should be stored and transported according to the regulations on toxic and dangerous goods. Storage tanks and reactors should be covered with inert gas. The temperature and pressure of the container should be kept below 25°C and 0.3Mpa. Implement relevant fire and explosion safety measures. Storage and transportation containers should be made of stainless steel.

Synthesis method

1. Chlorohydrin method: Propylene, chlorine, and water are hypochlorous at normal pressure and 60°C to generate chloropropanol, which is then saponified, condensed, and distilled. Process flow: (1) Propylene hypochlorination: Pass propylene and chlorine into water respectively for gas-liquid phase reaction. The reaction temperature is 35-50°C, and the molar ratio of propylene to chlorine is (1.1-1.2): 1. Water and chlorine first react to form hypochlorous acid, and then propylene reacts with hypochlorous acid to form chloropropanol. In order to reduce side reactions and avoid the generation of dichloropropane, the concentration of chloropropanol should not be too high, generally not higher than 6%-7%; chlorine should not be excessive. In addition to excessive chlorine causing an increase in the by-product dichloroethane, it also There is a risk of explosion; when passing chlorine and propylene into the reactor, direct contact between the two gases should be avoided as much as possible. Generally, the chlorine gas inlet is located below the propylene inlet, and the water inlet is located at the bottom.

(2) Chloropropanol removal Hydrogen chloride reaction: Add water-containing chloropropanol into the saponification kettle, then add 10% lime milk, and stir to perform the saponification reaction. During the process, attention must be paid to the adding method of materials. If chloropropanol is added to lime milk, the resulting When propylene oxide is in an alkaline medium, it will hydrolyze to form propylene glycol. Therefore, for the dehydrochlorination of chloropropanol, alkali must be added to the chloropropanol to obtain the highest possible yield of propylene oxide. The propylene oxide formation reaction is immediately evaporated to avoid hydrolysis. (3) Purification of propylene oxide: After condensation, the steamed propylene oxide is sent to the distillation tower for distillation to obtain the finished product.

2. Direct oxidation method: It is produced by oxidizing propylene with oxygen or air under the action of silver catalysis.

3. Indirect oxidation method: ethylbenzene (or isobutane, cumene, etc.) is oxidized to produce ethylbenzene hydroperoxide (or tert-butyl hydroperoxide, cumene hydroperoxide) Benzene, etc.), obtained by epoxidation reaction with propylene in the presence of catalysts such as molybdenum naphthenate.

4. Electrochemical chlorohydrin method: This method uses the principle of electrolysis of an aqueous solution of sodium chloride (or potassium chloride, sodium bromide, sodium iodide) to generate chlorine gas and sodium hydroxide. Propylene is introduced into the zone to generate chloropropanol. In the cathode zone, chloropropanol reacts with sodium hydroxide to generate propylene oxide.

5. Peroxide method: The main process is the production of organic hydrogen peroxide, and propylene is oxidized with peroxide. Whether the reaction is producing organic hydrogen peroxide or transferring the oxygen of the peroxide to propylene molecules in the presence of a catalyst, it is a liquid phase reaction. In addition to the main product propylene oxide, this method also has co-products. At present, the Haakon process of ethylbenzene and Haakon process of isobutane have been industrialized.
(1) Ethylbenzene Haakon method: ethylbenzene is used as raw material and oxidized to produce ethylbenzene hydroperoxide. Under the action of catalysts such as copper naphthenate, the propylene epoxidation reaction is performed to obtain propylene oxide. At the same time, α-phenylethyl alcohol is obtained, and styrene can be obtained after dehydration.
The reaction temperature of ethylbenzene oxidation is 130~150℃, the pressure is 0.07~0.14 MPa, the selectivity of generating ethylbenzene hydroperoxide is 90%, the epoxidation temperature is 50~120℃, the pressure is normal Pressure 0.1 ~ 0.864 MPa. For example, add 0.4% manganese naphthenate-sodium naphthenate (nMo /nNa=2, molar ratio) as the catalyst, reacted at 100°C for 1.5 h, and obtained the conversion rate of ethylbenzene hydroperoxide 99%, and the option of generating propylene oxide The property is 78%. The reaction product can be distilled to obtain the finished product propylene oxide, while α-phenylethyl alcohol is treated with TiO3-Al2O3As a catalyst, it is dehydrated at 250~280℃ and converted into styrene 100%, with a selectivity of 92%. The characteristics of this method are: low cost, economical and reasonable, less three wastes, and co-production of styrene.
(2) Isobutane Haakon process: It uses isobutane as raw material, reacts with propylene through the oxidant tert-butyl hydroperoxide to obtain propylene oxide and tert-butanol. The process is similar to the ethylbenzene Haakon process. similar. The preparation of tert-butyl hydroperoxide is at 100~110℃ without a catalyst. Usually tert-butyl hydroperoxide is used as a secondary initiator, and the reaction of propylene epoxidation isThe conditions are reaction temperature 121°C and pressure 4.1 MPa. It was carried out in the presence of molybdenum catalyst, the reaction time was 0.5 h, the yield of propylene oxide was 88% (calculated as peroxide), and the selectivity was 81%. This method can co-produce tert-butyl alcohol with a yield of about 60%.

Purpose

1. Propylene oxide is an important organic chemical raw material and the third largest product of the propylene series. Its largest use is to make polyether polyols and then polyurethane. In the distribution of uses in the United States and Western Europe, this use Accounting for more than 60% and 70% respectively. Used in the manufacture of nonionic surfactants and propylene alcohol, propylene glycol, alcohol ethers, propylene carbonate, isopropanolamine, propionaldehyde, synthetic glycerin, organic acids, synthetic resins, foam plastics, plasticizers, emulsifiers, and wetting agents , detergents, bactericides, fumigants, etc. Fine chemicals derived from propylene oxide are used in almost all industrial sectors and in daily life. In addition, propylene oxide is also used in small amounts in coatings, brake fluids, antifreeze, jet engine fuel additives, floor polishes, printing inks, electronic chemicals, cleaners, mineral processing agents, leather processing, photosensitive fluids for PS plates, short-acting Plasticizers, dyes, non-ionic surfactants, oil field demulsifiers, flame retardants, pesticide emulsifiers and wetting agents and other industries. Also used in organic synthesis. It is used as a solvent for nitrocellulose, cellulose acetate, and various resins, a stabilizer for vinyl chloride resin and chlorine-containing solvents, and a fading inhibitor for nitrocellulose spray paint. It is also used in the manufacture of surfactants (wetting agents, detergents, emulsifiers, etc.) as well as medicines, pesticides, spices, and artificial leather.

2. Used to prepare modified epoxy resin curing agent, synthetic resin and reactive diluent as epoxy resin adhesive. It is also used in the production of propylene glycol, propylene alcohol, propionaldehyde, polyether, isopropanolamine, higher fatty acid ester surfactants, plasticizers, medicines, pesticides, spices, and foam products. It is also a solvent for various resins, cellulose acetate, nitrocellulose, etc., a stabilizer for vinyl chloride resin and chlorine-containing solvents, a fading preventer for nitro spray paint, and can also be used as a bactericide, fumigant, wetting agent, etc. It is a broad-spectrum disinfectant that can kill bacterial propagules, spores, fungi and viruses. The general sterilization concentration is 800~2000mg/L.

3. It is an important raw material for organic synthesis. It is used to synthesize lubricants, surfactants, detergents, manufacture pesticides, and produce polyurethane foams and resins. [31]

extended-reading:https://www.bdmaee.net/cas-2273-43-0-2/
extended-reading:https://www.bdmaee.net/niax-c-323-tertiary-amine-catalyst-momentive/
extended-reading:https://www.cyclohexylamine.net/polycat-sa102-niax-a-577/
extended-reading:https://www.bdmaee.net/high-rebound-delayed-catalyst-c-225/
extended-reading:https://www.newtopchem.com/archives/1763
extended-reading:https://www.bdmaee.net/n-3-dimethyl-amino-propyl-n-n-diisopropanolamine/
extended-reading:https://www.newtopchem.com/archives/43979
extended-reading:https://www.newtopchem.com/archives/526
extended-reading:https://www.bdmaee.net/pc-cat-td-25-catalyst/
extended-reading:https://www.newtopchem.com/archives/44968

]]>
1,1-dichloroethylene https://www.newtopchem.com/archives/49452 Thu, 30 May 2024 10:07:56 +0000 http://www.newtopchem.com/archives/49452 1,1-dichloroethylene structural formula

Structural formula

Business number 01JK
Molecular formula C2H2Cl2
Molecular weight 97
label

vinylidene chloride,

Vinylidene chloride

Numbering system

CAS number:75-35-4

MDL number:MFCD00011653

EINECS number:200-864-0

RTECS number:YZ8061000

BRN number:1733365

PubChem number:24872048

Physical property data

1. Properties: colorless liquid with unpleasant odor. [1]

2. Melting point (℃): -122.6[2]

3. Boiling point (℃): 31.7[3]

4. Relative density (water = 1): 1.21[4]

5. Relative vapor Density (air=1): 3.3[5]

6. Saturated vapor pressure (kPa): 66.5 (20℃)[6]

7. Heat of combustion (kJ/mol): -1095.9[7]

8. Critical temperature (℃): 220.8[8]

9. Critical pressure (MPa): 5.21[9]

10. Octanol/water partition coefficient: 2.13 [10]

11. Flash point (℃): -19 (CC); -15 (OC) [11]

12. Ignition temperature (℃): 570[12]

13. Explosion upper limit (%): 16[13]

14. Lower explosion limit (%): 5.6[14]

15. Solubility: insoluble in water. [15]

16. Viscosity (mPa·s, 20ºC): 0.3302

17. Flash point (ºC): 570

18. Heat of evaporation (KJ/mol, b.p.): 26.197

19. Heat of fusion (KJ/mol): 6.519

20. Heat of formation (KJ/mol, 25ºC, Liquid): 25.1

21. Specific heat capacity (KJ/(kg·K), 25.15ºC, constant pressure): 1.155

22. Heat of polymerization (KJ/mol): 60.7

23. Relative density (25℃, 4℃): 1.4249

24. Solubility parameter (J·cm-3)0.5: 16.813

25. van der Waals area (cm2·mol-1): 6.110×109

26. van der Waals volume (cm3·mol-1): 41.430

27. Liquid phase Standard claimed heat (enthalpy) (kJ·mol-1): -23.9

28. Liquid phase standard hot melt (J·mol-1 ·K-1): 112.4

29. Gas phase standard claims heat (enthalpy) (kJ·mol-1): 2.4

30. Gas phase standard entropy (J·mol-1·K-1): 287.98

31. Gas phase standard free energy of formation ( kJ·mol-1): 25.4

32. Gas phase standard hot melt (J·mol-1·K-1):66.93

Toxicological data

1. Acute toxicity[12]

LD50: 200mg/kg (rat oral)

LC50: 6350ppm (rat inhalation, 4h)

2. Irritation No data available

3. Asia Acute and chronic toxicity[13]

Animal exposure 0.379g/m3 and 0.199g/ m3, 8 hours a day, 5 days a week, liver and kidney damage will occur after a few months. Exposure below 0.099g/m3 will cause mild liver and kidney disease.

4. Mutagenic[14]

Microbial mutagenicity: Salmonella typhimurium 5%��DNA damage: Rat inhalation 10ppm. Unprogrammed DNA synthesis: mice were orally administered 200 mg/kg. Cytogenetic analysis: hamster lung 250mg/L.

5. Teratogenicity[15] The lowest toxic dose of inhalation (TCLo) in rats 6~15 days after pregnancy 80ppm (7h), causing developmental malformations of the musculoskeletal system.

6. Carcinogenicity[16] IARC Carcinogenicity Comment: G3, insufficient evidence of carcinogenicity to humans and animals .

7. Others[17] TCLo: 25ppm (human inhalation)

Ecological data

1. Ecotoxicity[18]

LC50: 169mg/L (96h) (fathead minnow , static); 74mg/L (96h) (bluegill, static); 220ppm (96h) (red perch, static)

2. Biodegradability None Information

3. Non-biodegradability[19] In the air, when the concentration of hydroxyl radicals is 5.00×10 When 5 pieces/cm3, the degradation half-life is 1.2d (theoretical).

Molecular structure data

1. Molar refractive index: 20.58

2. Molar volume (cm3/mol): 79.2

3. Isotonic specific volume (90.2K ): 173.7

4. Surface tension (dyne/cm): 23.1

5. Polarizability (10-24cm3): 8.15

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): 2.3

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 0

4. Number of rotatable chemical bonds: 0

5. Number of tautomers: none

6. Topological molecule polar surface area 0

7. Number of heavy atoms: 4

8. Surface charge: 0

9. Complexity: 27

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

1. Volatile and toxic. It has a tendency to self-polymerize and is easily oxidized by air. After oxidation, chlorine, hydrogen chloride, phosgene, formaldehyde and peroxide are generated. At the same time, this peroxide can promote the polymerization of monomers. It can form copolymers with various ethylene derivatives (such as vinyl chloride, styrene, etc.). Therefore, it is necessary to add a polymerization inhibitor or seal it with an aqueous solution of nitrogen, carbon dioxide, and alkali. Copper or brass poses a risk of forming explosive acetylene compounds.

2. It is easily polymerized under the action of light or catalyst, and can be copolymerized with vinyl chloride or acrylonitrile. It easily undergoes an auto-oxidation reaction with oxygen in the air to generate peroxides that are dangerous to explode. Peroxide slowly decomposes to form formaldehyde, phosgene and hydrogen chloride. Generally, a small amount of hydroquinone, phenols, and alkylamines are added as stabilizers. It reacts with chlorine at 40~50℃ to generate 1,1,2,2-tetrachloroethane. In the presence of anhydrous ferric chloride or aluminum trichloride, it reacts with hydrogen chloride to generate 1,1,1-trichloroethane.

3. Irritating skin and eyes. Inhaling high-concentration vapor can cause central nervous system paralysis and coma. Long-term inhalation of low-concentration vapor can cause damage to the liver and kidneys, and can cause tumors in animals and humans, so please pay attention to ventilation when using it. The inhalation lethal concentration for mice is 25209.5 mg/m3. The olfactory threshold concentration is 1985mg/m3. The maximum allowable concentration in the workplace is 40mg/m3 (USA).

4. Stability[20] Stable

5. Incompatible substances[21] Strong oxidants, acids, alkalis

6. Conditions to avoid contact[22] Heating

7. Polymerization hazard[23] Polymerization

8. Decomposition products[24] Hydrogen chloride

Storage method

Storage Precautions[25] Stored in a cool, ventilated warehouse. Keep away from fire and heat sources. The storage temperature should not exceed 37°C. The packaging must be sealed and must not come into contact with air. They should be stored separately from oxidants, acids, and alkalis, and avoid mixed storage. It should not be stored for a long time to avoid deterioration. Use explosion-proof lighting and ventilation facilities. It is prohibited to use mechanical equipment and tools that are prone to sparks. The storage area should be equipped with emergency release equipment and suitable containment materials.

Synthesis method

1. Vinyl chloride chlorination method: Vinyl chloride is obtained by chlorination and alkaline hydrolysis. During the chlorination reaction, dichloroethane and s-tetrachloroethane are generated; during the alkaline hydrolysis process, 1,2-dichloroethane is generated. Among them, 1,1,2-trichloroethane is produced by removing hydrogen chloride to produce vinylidene chloride, which is a commonly used method in industry. According to the different alkali used, it can be divided into sodium hydroxide method, calcium hydroxide method and ammonium hydroxide method. The final product of the former has many by-products with a boiling point lower than 30°C and a high content of calcium acetylene chloride, but there is no environmental pollution; the final new technology of the latter has no by-products of calcium chloride and sodium chloride, and post-processing is easy. When using hydroxide, strong stirring is necessary to reduce the possibility of foaming, correspondingly increase the utilization factor of the equipment, and the amount of chloroacetylene generated can also be reduced to 1/10.
①Sodium hydroxide method:This method can be divided into two types. One is that all reactions are carried out in a continuous reactor, the batching ratio (NaOH:CH2ClCHCl2) is (1-1.2:1), and the content of sodium hydroxide is 10%-20%. The reaction temperature is 50-70°C, the product content is 94%, and the yield is 93.9%. The second method is to use sodium chloride-containing sodium hydroxide and 1,1,2-trichloroethane to convert into vinylidene chloride. This method directly uses electrolyte, and the sodium chloride generated after dehydrochlorination can be returned to the electrolysis system for recycling. Therefore, it is most suitable for the production of vinylidene chloride in chlor-alkali plants.
②Calcium hydroxide method: This method can be divided into four types. First, the raw material calcium hydride concentration is 200g/L, the calcium carbonate concentration is <20g/L, the calcium hydroxide excess is 50%, and the system temperature is 80°C at the beginning of the reaction, and then rises to 90-92°C. The crude vinylidene chloride obtained after the reaction is purified by distillation, and the yield can reach more than 80%. Secondly, since the control step of the reaction to generate vinylidene chloride is material transfer at the interface, a small amount of surfactant and water should be added to improve the contact effect. Third, in order to simplify the process, the reaction and distillation are combined in one tower. Fourth, first carry out the addition reaction of vinyl chloride and chlorine through the reactor, and then add 10% calcium hydroxide to convert 1,1,2-trichloroethane into vinylidene chloride. After refining, the product vinylidene chloride is obtained. Ethylene chloride.
③Ammonium hydroxide method: Xudao Company proposed to use ammonium hydroxide to replace sodium hydroxide and calcium hydroxide. The feed ratio is NH4OH:CH2ClCHCl2=2:1 (mol), the reaction temperature is 120℃, and the pressure is about 0.86MPa, conversion rate 52.1%, ammonium chloride, ammonia and unreacted 1,1,2-trichloroethane can be recycled. The chlorination reaction is carried out in a tower reactor. The tower is filled with trichloroethane. Iron rings are stacked in the tower as a catalyst. Chlorine and vinyl chloride are introduced from the bottom of the tower in a ratio of 1.05:1 (mol). The reaction temperature is controlled at 35-45℃. Since the reaction liquid of vinyl chloride and chlorine gas can circulate naturally depending on the temperature difference, it can also be forced to circulate using a pump. The reaction temperature is about 75°C and the pressure is normal pressure. The generated vinylidene chloride passes through the rough separation tower on the kettle and then through the rectification tower to purify and refine the product vinylidene chloride. At present, all domestic factories use kettle-type alkaline hydrolysis reactors, most of which operate intermittently. In the past, some people used 2.5%-3.0% milk of lime as alkali solution, but later switched to dilute sodium hydrochloride solution due to clogging of equipment. In the intermittent operation, the reaction temperature was raised to 85°C in the later stage of alkaline hydrolysis. As a result, the impurities in the crude vinylidene chloride increased significantly, which made refining difficult.

2. Alkaline chlorination method of ethyl chloride: This method uses 1,2-dichloroethane as raw material, and chlorides it into 1,1, 2-Trichloroethane, in addition to 1,2-dichloroethane and chlorine, 12% ethylene is also added to the reactants to accelerate the chlorination reaction of dichloroethane. Trichloroethane is purified in a low-boiling tower and a high-boiling tower and then reacts with a dilute alkali to remove a molecule of hydrogen chloride to obtain vinylidene chloride; crude vinylidene chloride is refined in a low-boiling tower and a high-boiling tower to obtain pure vinylidene chloride. Ethylene Products. The chlorination yield of the above process is 95.4%, the alkaline hydrolysis yield is 99.8%, and the product purity is as high as 99.9%.

3. Methyl chloroform thermal cracking hydrogen chloride method: This method uses vinyl chloride as raw material, and is added with hydrogen chloride to generate 1,1-dichloroethane; dichloroethane is chlorinated at a high temperature of 480°C , the main chlorinated liquid products obtained are vinylidene chloride, methyl chloroform (1,1,1-trichloroethane) and vinyl chloride. By-products include trichlorethylene, cis-dichloroethylene, trans-dichloroethylene, polychlorethane and hydrogen chloride. The chlorinated liquid is distilled to separate the above products, vinyl chloride and hydrogen chloride are returned to the addition process, trichlorethylene is sold as a commodity, methyl chloroform is cracked into vinylidene chloride by high temperature, the cracked mixture and the chlorinated liquid are combined and separated by distillation. Polymerization inhibitor is added to vinylidene chloride for sale as a commodity. 1,1-dichloroethane and 1,2-dichloroethylene are chlorinated in liquid phase at low temperature to form 1,1-dichloroethane and tetrachloroethane, and then sent to Enter the high temperature chlorinator.

4. Ethane chlorination and thermal cracking to remove hydrogen chloride: This method uses ethane as raw material, which is chlorinated at a high temperature of 426.6°C into hydrogen chloride, vinyl chloride, vinylidene chloride, ethyl chloride, A mixture of 1,1-dichloroethane and methyl chloroform is used to separate the above product by fractional distillation. Hydrogen chloride is used in the vinyl chloride hydrochlorination reactor; methyl chloroform is cracked at high temperature to decompose a molecule of hydrogen chloride to generate vinylidene chloride, which is combined with the chlorinated liquid for separation and purification to obtain the high-purity product vinylidene chloride.

5. High-temperature thermal dehydrochlorination method: First, preheat 1,1,2-trichloroethane to 250°C, and then pass it into a tubular reactor for decomposition reaction. The reaction temperature is 350-500°C. The advantage of this method is that the decomposition product hydrogen chloride can be utilized, but the by-product 1,2-dichloroethylene is more.

Purpose

1. This product is a copolymer based on (containing at least 80%), which can produce polyvinylidene with fire resistance. Various synthetic resins can be produced by copolymerizing 1,1-dichloroethylene with acrylonitrile, butadiene, acrylate, styrene, etc. Vinylidene chloride resin can be processed into fibers or films and used for surface coatings on paper or plastic films. Polyvinylidene chloride fiber can be used to produce fabrics, tents, insect nets, car seat cushions, etc. Polyvinylidene chloride film has lower air permeability and moisture permeability than other plastic films, and is suitable for food packaging. Copolymers with methacrylic acid, methyl methacrylate, etc. can be used in the film industry. Mainly used as raw material for the manufacture of vinylidene chloride resin and 1,1,1-trichloroethane. Because of its high volatility, it is usually not used as a solvent.

2. Used in the manufacture of various copolymers, synthetic fibers, adhesives and organicsynthesis. [26]

extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/Dibutyltin-monobutyl-maleate-CAS-66010-36-4-BT-53C.pdf
extended-reading:https://www.newtopchem.com/archives/839
extended-reading:https://www.cyclohexylamine.net/pc-cat-nmm-addocat-101-tertiary-amine-catalyst-nmm/
extended-reading:https://www.bdmaee.net/wp-content/uploads/2022/08/37-3.jpg
extended-reading:https://www.bdmaee.net/sponge-foaming-catalyst-smp/
extended-reading:https://www.newtopchem.com/archives/950
extended-reading:https://www.newtopchem.com/archives/44867
extended-reading:https://www.newtopchem.com/archives/44386
extended-reading:https://www.morpholine.org/high-quality-cas-26761-42-2-potassium-neodecanoate/
extended-reading:https://www.cyclohexylamine.net/tertiary-amine-catalyst-dabco-pt303-catalyst-dabco-pt303/

]]>
1,8-Naphthyl sulfone https://www.newtopchem.com/archives/49437 Thu, 30 May 2024 09:52:48 +0000 http://www.newtopchem.com/archives/49437 1,8-Naphthyl sulfone structural formula

Structural formula

Business number 01TM
Molecular formula C10H6O3S
Molecular weight 206.22
label

1,8-Naphthalenesultone,

1-Naphthol-8-sulfonic acid sultone,

8-Hydroxynaphthalene-1-sulfonic acid sultone

Numbering system

CAS number:83-31-8

MDL number:MFCD00005937

EINECS number:201-468-0

RTECS number:None

BRN number:9381

PubChem number:24859025

Physical property data

1. Character:Light yellow needle-shaped crystal


2. Density (g/mL,25/4℃): Unsure


3. Relative vapor density (g /mL,AIR= 1): Unsure


4. Melting point (ºC):154-161


5. Boiling point (ºC,Normal pressure): Unsure


6. Boiling point (ºC,5.2kPa): Unsure


7. Refractive index: Uncertain


8. Flashpoint (ºC): Unsure


9. Specific optical rotation (º): Unsure


10. Autoignition point or ignition temperature (ºC): Unsure


11. Vapor pressure (kPa,25ºC): Unsure


12. saturated vapor pressure (kPa,60ºC): Unsure


13. Heat of combustion (KJ/mol): Unsure


14. Critical temperature (ºC): Unsure


15. Critical pressure (KPa): Unsure


16. Oil and water (octanol/Log value of water) partition coefficient: Uncertain


17. Explosion limit ( %,V/V): Unsure


18. Lower explosion limit (%,V/V): Unsure


19. Solubility: Uncertain.

Toxicological data

None

Ecological data

None

Molecular structure data

1. Molar refractive index:52.81

2. Molar volume (m3/mol):132.5


3. isotonic specific volume (90.2K):374.4


4. Surface Tension (dyne/cm):63.7


5. Polarizability10-24cm3):20.93

Compute chemical data

1. Reference value for hydrophobic parameter calculation (XlogP): 2.3

2. Number of hydrogen bond donors: 0

3. Number of hydrogen bond acceptors: 3

4. Number of rotatable chemical bonds: 0

5. Number of tautomers: none

6. Topological molecule polar surface area 51.8

7. Number of heavy atoms: 14

8. Surface charge: 0

9. Complexity: 330

10. Number of isotope atoms: 0

11. Determine the number of atomic stereocenters: 0

12. Uncertain number of atomic stereocenters: 0

13. Determine the number of chemical bond stereocenters: 0

14. Number of uncertain chemical bond stereocenters: 0

15. Number of covalent bond units: 1

Properties and stability

None

Storage method

Save in a sealed, cool and dark place.

Synthesis method

None

Purpose

For organic synthesis. Organic synthesis intermediates.

extended-reading:https://www.bdmaee.net/neodecanoic-acid-zincsalt/
extended-reading:https://www.newtopchem.com/archives/40028
extended-reading:https://www.cyclohexylamine.net/polyurethane-amine-catalyst-eg-sole-eg-catalyst-eg/
extended-reading:https://www.newtopchem.com/archives/745
extended-reading:https://www.newtopchem.com/archives/44834
extended-reading:https://www.newtopchem.com/archives/39844
extended-reading:https://www.newtopchem.com/archives/category/products/page/114
extended-reading:https://www.bdmaee.net/anhydrous-tin-chloride/
extended-reading:https://www.bdmaee.net/n-dimethylcyclohexylamine-2/
extended-reading:https://www.cyclohexylamine.net/cas-33568-99-9-dioctyl-dimaleate-di-n-octyl-tin/

]]>