DMCHA (N – Amine Catalysts https://www.newtopchem.com The Leading Supplier of China Amine Catalysts Tue, 11 Mar 2025 19:18:24 +0000 zh-CN hourly 1 https://wordpress.org/?v=6.1.7 https://www.newtopchem.com/wp-content/uploads/2023/12/1.jpg DMCHA (N – Amine Catalysts https://www.newtopchem.com 32 32 DMCHA (N,N-dimethylcyclohexylamine): Technical support for higher adhesion for high-performance sealants https://www.newtopchem.com/archives/56159 Tue, 11 Mar 2025 19:18:24 +0000 http://www.newtopchem.com/archives/56159 DMCHA (N,N-dimethylcyclohexylamine): Technical support for higher adhesion for high-performance sealants

Introduction

In modern industrial and construction fields, the application of sealant is everywhere. Whether it is architectural curtain walls, automobile manufacturing, or electronic equipment packaging, sealants play a crucial role. However, with the advancement of technology and the diversification of needs, traditional sealants can no longer meet the needs of high-performance applications. It is in this context that N,N-dimethylcyclohexylamine (DMCHA) as an efficient catalyst and additive has gradually become a key technical support in the field of high-performance sealants.

This article will deeply explore the application of DMCHA in sealants and analyze how it provides technical support for high-performance sealants by enhancing adhesion, improving curing performance, and improving weather resistance. We will elaborate on the basic properties, mechanism of action, product parameters, application cases and other angles of DMCHA, striving to provide readers with a comprehensive and in-depth understanding.

1. Basic properties of DMCHA

1.1 Chemical structure and physical properties

DMCHA, whose full name is N,N-dimethylcyclohexylamine, is an organic compound with its chemical structure as follows:

 CH3
        |
   N-CH3
    /
C6H10 C6H10

DMCHA is a colorless to light yellow liquid with a typical amine odor. Its molecular weight is 141.25 g/mol, the boiling point is 165-167°C, and the density is 0.86 g/cm³. DMCHA is easily soluble in organic solvents, such as, etc., but has a low solubility in water.

1.2 Chemical Properties

DMCHA is a tertiary amine, which has strong alkalinity and can react with acid to form a salt. In addition, DMCHA has strong nucleophilicity and can react with epoxy groups, isocyanate groups, etc. Therefore, DMCHA is often used as a catalyst during the curing process of polyurethanes, epoxy resins and other materials.

2. The mechanism of action of DMCHA in sealants

2.1 Catalysis

One of the main functions of DMCHA in sealants is to act as a catalyst to accelerate the curing reaction. Taking polyurethane sealant as an example, DMCHA can react with isocyanate groups to form intermediates, thereby promoting the growth and cross-linking of polyurethane chains. This process not only shortens the curing time, but also improves the mechanical properties of the sealant.

2.1.1 Catalytic mechanism

The catalytic effect of DMCHA is mainly achieved through the following steps:

  1. Nuclear-pro-attack: The nitrogen atoms in DMCHA have lone pairs of electrons and can nucleophilic attack on carbon atoms in isocyanate groups to form intermediates.
  2. Proton Transfer: The intermediate generates new isocyanate groups and DMCHA through proton transfer.
  3. Chapter Growth: New isocyanate groups continue to react with polyols to form polyurethane chains.

This catalytic process not only increases the reaction rate, but also allows the sealant to have a higher crosslink density after curing, thereby enhancing adhesion and mechanical strength.

2.2 Enhance adhesion

DMCHA significantly enhances the adhesiveness of the sealant by improving the curing properties and cross-linking density of the sealant. Specifically, DMCHA can:

  1. Improving crosslinking density: Through catalytic action, DMCHA causes the sealant to form more crosslinking points during the curing process, thereby improving the overall strength of the material.
  2. Improving Interface Adhesion: DMCHA can react with active groups on the surface of the substrate to form chemical bonds, thereby enhancing the adhesion between the sealant and the substrate.

2.3 Improve weather resistance

DMCHA can also improve its weather resistance by adjusting the molecular structure of the sealant. Specifically, DMCHA can:

  1. Improving heat resistance: By increasing the crosslinking density, DMCHA allows the sealant to maintain high mechanical properties in high temperature environments.
  2. Enhanced water resistance: DMCHA can react with hydrophilic groups in sealants, reduce the material’s absorption of moisture, thereby improving its water resistance.

III. Product parameters of DMCHA

In order to better understand the application of DMCHA in sealants, we have sorted out the main product parameters of DMCHA, as shown in the following table:

parameter name Value/Description
Molecular Weight 141.25 g/mol
Boiling point 165-167°C
Density 0.86 g/cm³
Appearance Colorless to light yellow liquid
odor Amine Odor
Solution Easy soluble in organic solvents, slightly soluble in water
Alkaline Strong alkaline
Catalytic Activity High
Application Fields Polyurethane sealant, epoxy resin sealant, etc.

IV. Application cases of DMCHA in high-performance sealant

4.1 Building curtain wall sealant

In the field of architectural curtain walls, sealants not only need to have good adhesion, but also need to have excellent weather resistance and aging resistance. Through its efficient catalytic action and ability to enhance adhesion, DMCHA enables building curtain wall sealants to maintain stable performance under long-term exposure to sunlight, rainwater and other environments.

4.1.1 Application Effect

  • Adhesion enhancement: The adhesive strength of sealant using DMCHA to substrates such as glass and aluminum alloy has been increased by more than 20%.
  • Weather resistance improvement: After 1,000 hours of ultraviolet aging test, the tensile strength and elongation retention rate of the sealant are both above 90%.

4.2 Automobile manufacturing sealant

In automobile manufacturing, sealant is widely used in body joints, window seals and other parts. Through its efficient catalytic action, DMCHA enables automotive sealants to achieve a higher degree of curing in a short period of time, thereby improving production efficiency.

4.2.1 Application effect

  • Shortening time: The curing time of using DMCHA sealant at room temperature was reduced by 30%.
  • Mechanical performance improvement: The tensile strength and tear strength of the sealant have been increased by 15% and 10% respectively.

4.3 Electronic equipment packaging sealant

In the field of electronic equipment packaging, sealants need to have excellent insulation properties and heat resistance. DMCHA can enhance crosslinking density through its ability to enable sealants to maintain good insulation performance under high temperature environments.

4.3.1 Application Effect

  • Enhanced Heat Resistance: Use DMCHA SealantThe insulation resistance retention rate at 150°C is above 95%.
  • Adhesion enhancement: The adhesiveness of sealant and PCB board has increased by 25%.

V. Future development trends of DMCHA

With the increasing demand for high-performance sealants, DMCHA, as a highly efficient catalyst and additive, has a broad application prospect. In the future, the development trends of DMCHA may include:

  1. Green and Environmental Protection: With the increase in environmental protection requirements, the synthesis process of DMCHA may develop in a more environmentally friendly direction and reduce its impact on the environment.
  2. Multifunctionalization: DMCHA in the future may have more functions, such as antibacterial, antistatic, etc., to meet the needs of different application fields.
  3. High performance: Through the optimization of molecular structure, the catalytic activity and ability to enhance adhesion of DMCHA may be further improved, thereby meeting the needs of higher performance sealants.

VI. Conclusion

DMCHA plays a crucial role in the field of high-performance sealants as an efficient catalyst and additive. Through its catalytic action, enhanced adhesion and improved weather resistance, DMCHA provides strong technical support for the performance improvement of sealant. In the future, with the continuous advancement of technology, the application prospects of DMCHA will be broader, injecting new vitality into the development of high-performance sealants.


Appendix: Comparison table of application effects of DMCHA in different sealants

Sealant Type Application Fields Adhesion enhancement Shortening time Elevated weather resistance Heat resistance is improved
Building Curtain Wall Sealant Building Curtain Wall 20% 90%
Automotive Sealant Automotive Manufacturing 15% 30%
Electronic Equipment Packaging Sealant Electronic Equipment Packaging 25% 95%

Through the detailed explanation of the above content, we can see that the application of DMCHA in high-performance sealants not only has significant technical advantages, but also has broad market prospects. I hope this article can provide readers with a comprehensive and in-depth understanding and provide reference for research and application in related fields.

Extended reading:https://www.bdmaee.net/niax-a-501-catalyst-cas3033-62-3-momentive/

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/33-12.jpg

Extended reading:https://www.newtopchem.com/archives/39796

Extended reading:https://www.bdmaee.net/nt-cat-pc46-catalyst-cas127-08-2-newtopchem/

Extended reading:https://www.newtopchem.com/archives/44304

Extended reading:https://www.bdmaee.net/jeffcat-zf-22-catalyst-cas3033-62-3-huntsman/

Extended reading:https://www.bdmaee.net/niax-b-11-plus-tertiary-amine-catalyst-momentive/

Extended reading:https://www.newtopchem.com/archives/40376

Extended reading:https://www.newtopchem.com/archives/category/products/page/48

Extended reading:https://www.bdmaee.net/dabco-33-lsi-dabco-33lsi/

]]>
DMCHA (N,N-dimethylcyclohexylamine): The driving force for the development of the polyurethane industry in a greener direction https://www.newtopchem.com/archives/56157 Tue, 11 Mar 2025 19:14:10 +0000 http://www.newtopchem.com/archives/56157 DMCHA (N,N-dimethylcyclohexylamine): The driving force for the development of the polyurethane industry in a greener direction

Introduction

With the increasing global attention to environmental protection and sustainable development, all walks of life are seeking more environmentally friendly and efficient solutions. As an important part of the chemical industry, the polyurethane industry is also actively exploring new paths for green development. As a highly efficient catalyst, N,N-dimethylcyclohexylamine (DMCHA) is becoming an important driving force for the development of the polyurethane industry in a greener direction. This article will introduce in detail the characteristics, applications and their important role in the polyurethane industry.

1. Basic characteristics of DMCHA

1.1 Chemical structure

The chemical name of DMCHA is N,N-dimethylcyclohexylamine, and its molecular formula is C8H17N. It is a colorless to light yellow liquid with a unique amine odor. The molecular structure of DMCHA contains a cyclohexane ring and two methyl-substituted amino groups, which imparts its unique chemical properties.

1.2 Physical Properties

Properties value
Molecular Weight 127.23 g/mol
Boiling point 160-162°C
Density 0.86 g/cm³
Flashpoint 45°C
Solution Easy soluble in water and organic solvents

1.3 Chemical Properties

DMCHA is a strong basic compound with good catalytic properties. It is able to react with a variety of organic and inorganic compounds, especially in polyurethane synthesis, and exhibits excellent catalytic effects. In addition, DMCHA has certain stability and can maintain its catalytic activity over a wide temperature range.

2. Application of DMCHA in the polyurethane industry

2.1 Basic concepts of polyurethane

Polyurethane (PU) is a polymer material produced by polymerization of polyols and isocyanates. It has excellent mechanical properties, wear resistance, chemical resistance and elasticity, and is widely used in foam plastics, elastomers, coatings, adhesives and other fields.

2.2 DMCHA in polyurethaneThe role in synthesis

In the synthesis of polyurethane, the selection of catalyst is crucial. As a highly efficient catalyst, DMCHA can significantly accelerate the reaction between polyols and isocyanates, and improve the reaction rate and product quality. Its main functions include:

  • Accelerating reaction: DMCHA can effectively reduce the reaction activation energy and enable the reaction to proceed rapidly at lower temperatures.
  • Control reaction rate: By adjusting the amount of DMCHA, the reaction rate of polyurethane can be accurately controlled, thereby obtaining ideal product performance.
  • Improving product performance: The use of DMCHA can improve the mechanical properties, heat and chemical resistance of polyurethane.

2.3 Application of DMCHA in different polyurethane products

2.3.1 Polyurethane foam

Polyurethane foam is one of the widely used fields of DMCHA. DMCHA shows excellent catalytic effects in the production of soft and rigid polyurethane foams. By adjusting the amount of DMCHA, the density, pore size and mechanical properties of the foam can be controlled to meet the needs of different application scenarios.

Foam Type DMCHA dosage Main Performance
Soft foam 0.1-0.5% High elasticity, low density
Rough Foam 0.2-0.8% High strength, low thermal conductivity

2.3.2 Polyurethane elastomer

Polyurethane elastomers have excellent wear resistance and elasticity, and are widely used in automobiles, construction and sports equipment. DMCHA can effectively control the reaction rate in the synthesis of polyurethane elastomers, improve the mechanical properties and aging resistance of the product.

Elastomer Type DMCHA dosage Main Performance
Thermoplastic elastomer 0.1-0.3% High elasticity, wear resistance
Casted elastomer 0.2-0.5% Hao QiangDegree and aging resistance

2.3.3 Polyurethane coatings and adhesives

DMCHA is mainly used in polyurethane coatings and adhesives in its excellent catalytic properties and stability. By using DMCHA, the adhesion of the coating, weathering resistance and adhesive strength can be improved.

Product Type DMCHA dosage Main Performance
Coating 0.05-0.2% High adhesion and weather resistance
Adhesive 0.1-0.4% High bonding strength, aging resistance

3. DMCHA’s Green Advantages

3.1 Low Volatile Organic Compounds (VOC) Emissions

DMCHA, as a low volatile organic compound, is used to significantly reduce VOC emissions during polyurethane production. This not only helps improve the working environment, but also reduces pollution to the atmospheric environment.

3.2 High efficiency catalysis to reduce energy consumption

The efficient catalytic properties of DMCHA enable the polyurethane reaction to be carried out quickly at lower temperatures, thereby reducing energy consumption. This not only reduces production costs, but also reduces the negative impact on the environment.

3.3 Biodegradability

DMCHA has a certain biodegradability and can gradually decompose in the natural environment, reducing the long-term impact on the environment. This makes DMCHA a more environmentally friendly catalyst choice.

4. DMCHA market prospects

4.1 Overview of the global polyurethane market

The global polyurethane market has maintained steady growth in recent years and is expected to continue this trend in the next few years. With the increasing strict environmental regulations and the increasing demand for green products from consumers, the demand for environmentally friendly catalysts in the polyurethane industry will also continue to increase.

4.2 Market demand for DMCHA

As an efficient and environmentally friendly catalyst, DMCHA’s market demand is expected to continue to grow with the green transformation of the polyurethane industry. Especially in the fields of automobiles, construction and furniture, DMCHA has broad application prospects.

4.3 Competition pattern

At present, the global DMCHA market is mainly dominated by several large chemical companies. With the advancement of technology and the expansion of the market, more companies are expected to enter this field., promote continuous innovation in the production and application technology of DMCHA.

5. DMCHA production and quality control

5.1 Production process

DMCHA production is mainly achieved through the methylation reaction of cyclohexylamine and formaldehyde. Specific processes include:

  1. Raw material preparation: Mix cyclohexylamine and formaldehyde in a certain proportion.
  2. Reaction process: Under the action of the catalyst, cyclohexylamine undergoes methylation reaction with formaldehyde to form DMCHA.
  3. Separation and purification: DMCHA is isolated and purified by distillation and other methods to obtain a high-purity product.

5.2 Quality Control

To ensure the product quality of DMCHA, manufacturers must strictly control the following parameters:

parameters Control Range
Purity ≥99%
Moisture ≤0.1%
Color ≤50 APHA
Acne ≤0.1 mg KOH/g

5.3 Safety and Environmental Protection

The following safety and environmental protection matters should be paid attention to during the production and use of DMCHA:

  • Safe Operation: DMCHA is corrosive and irritating, and operators must wear protective equipment.
  • Waste treatment: Waste liquid and waste gas generated during the production process must be treated and can only be discharged after meeting environmental protection standards.

6. Future development direction of DMCHA

6.1 Technological Innovation

With the advancement of science and technology, the production and application technology of DMCHA will continue to innovate. In the future, it is expected to develop a more efficient and environmentally friendly DMCHA production process to further improve its catalytic performance and environmentally friendly characteristics.

6.2 Application Expansion

DMCHA application areas will be further expanded, not only in the polyurethane industry, but may also be used in other chemical fields, such as medicine, pesticides, etc. This will bring new growth points to DMCHA’s market demand.

6.3 Green certification

With the increase in environmental awareness, DMCHA’s green certification will become an important factor in market competition. In the future, more companies are expected to pass green certification to enhance the market competitiveness of their products.

Conclusion

DMCHA, as an efficient and environmentally friendly catalyst, is becoming an important driving force for the development of the polyurethane industry in a greener direction. Through its widespread application in polyurethane foams, elastomers, coatings and adhesives, DMCHA not only improves product performance, but also reduces negative impacts on the environment. With the advancement of technology and the increase in market demand, the application prospects of DMCHA will be broader, injecting new vitality into the sustainable development of the polyurethane industry.

Extended reading:https://www.newtopchem.com/archives/category/products/page/159

Extended reading:https://www.newtopchem.com/archives/44126

Extended reading:<a href="https://www.newtopchem.com/archives/44126

Extended reading:https://www.bdmaee.net/bdma/

Extended reading:https://www.bdmaee.net/wp-content/uploads/2022/08/Butyl-tin-triisooctoate-CAS23850-94-4-FASCAT9102-catalyst.pdf

Extended reading:https://www.bdmaee.net/cas-136-53-8/

Extended reading:https://www.newtopchem.com/archives/category/products/page/14

Extended reading:https://www.bdmaee.net/self-skinning-pinhole-elimination-agent/

Extended reading:https://www.bdmaee.net/u-cat-660m-catalyst-cas63469-23-8-sanyo-japan/

Extended reading:https://www.newtopchem.com/archives/1068

Extended reading:<a href="https://www.newtopchem.com/archives/1068

Extended reading:https://www.newtopchem.com/archives/39817

]]>
DMCHA (N,N-dimethylcyclohexylamine): Provides a healthier indoor environment for smart home products https://www.newtopchem.com/archives/56155 Tue, 11 Mar 2025 19:09:37 +0000 http://www.newtopchem.com/archives/56155 DMCHA (N,N-dimethylcyclohexylamine): Provides a healthier indoor environment for smart home products

Introduction

With the continuous advancement of technology, smart home products have become an important part of modern homes. However, with the popularity of these products, indoor air quality issues have also attracted increasing attention. In order to provide a healthier indoor environment, N,N-dimethylcyclohexylamine (DMCHA) is being widely used in smart home products as a new material. This article will introduce the characteristics, applications and their advantages in smart home products in detail.

1. Basic characteristics of DMCHA

1.1 Chemical structure

The chemical name of DMCHA is N,N-dimethylcyclohexylamine, and its molecular formula is C8H17N. It is a colorless to light yellow liquid with a unique amine odor.

1.2 Physical Properties

Properties value
Molecular Weight 127.23 g/mol
Boiling point 160-162°C
Density 0.86 g/cm³
Flashpoint 45°C
Solution Easy soluble in organic solvents

1.3 Chemical Properties

DMCHA has good stability and reactivity, and can react with a variety of compounds to produce derivatives with specific functions. Its amine groups make it have good basicity and nucleophilicity, and are suitable for a variety of chemical reactions.

2. Application of DMCHA in smart home products

2.1 Air Purifier

DMCHA can be used as an active ingredient in an air purifier to remove harmful substances in the air, such as formaldehyde and benzene, volatile organic compounds (VOCs) in the air through chemical reactions.

2.1.1 Working principle

DMCHA reacts with VOCs in the air to produce harmless compounds, thereby purifying the air. The reaction mechanism is as follows:

[ text{DMCHA} + text{VOCs} rightarrow text{harmless compounds} ]

2.1.2 Product parameters

parameters value
Purification efficiency Above 95%
Applicable area 20-50 square meters
Noise Level <30 decibels
Power consumption 30-50 watts

2.2 Smart Curtains

DMCHA can be used in the coating of smart curtains, decomposing harmful substances in the air through photocatalytic action, while regulating indoor light.

2.2.1 Working principle

DMCHA generates free radicals under light, reacts with harmful substances in the air, and decomposes into harmless substances. The reaction mechanism is as follows:

[ text{DMCHA} + text{illumination} rightarrow text{free radical} ]
[ text{free radical} + text{hazardous substance} rightarrow text{hazardous substance} ]

2.2.2 Product parameters

parameters value
Photocatalytic efficiency Above 90%
Applicable light intensity 500-1000 lux
Adjustment range 0-100%
Power consumption 5-10 watts

2.3 Intelligent Temperature Control System

DMCHA can be used in sensors of intelligent temperature control systems, detect indoor air quality through chemical reactions, and automatically adjust temperature and humidity.

2.3.1 Working principle

DMCHA reacts with harmful substances in the air to generate electrical signals. The sensor adjusts temperature and humidity according to changes in electrical signals. The reaction mechanism is as follows:

[ text{DMCHA} + text{hazardous substances} rightarrow text{electrical signal} ]

2.3.2 Product parameters

parameters value
Detection Accuracy ±0.1°C
Response time <1 second
Applicable temperature range 0-50°C
Power consumption 1-2 watts

III. Advantages of DMCHA

3.1 Efficient purification

DMCHA has efficient purification capabilities, which can quickly remove harmful substances from the air and provide a healthier indoor environment.

3.2 Environmental protection and safety

The compounds produced by DMCHA during the reaction are harmless substances and will not cause secondary pollution to the environment. At the same time, its low toxicity and low volatility make it safer during use.

3.3 Multifunctionality

DMCHA can not only be used for air purification, but also in a variety of smart home products such as photocatalysis and sensors, and has a wide range of application prospects.

3.4 Economy

DMCHA has a low production cost and a long service life, which can effectively reduce the maintenance cost of smart home products.

IV. Future development of DMCHA

4.1 New Materials Research and Development

With the continuous advancement of technology, derivatives and new materials of DMCHA will be continuously developed to further improve their performance and scope of application.

4.2 Intelligent application

DMCHA will combine with artificial intelligence, the Internet of Things and other technologies to achieve more intelligent applications, such as automatic detection, automatic adjustment, etc., to provide users with a more convenient user experience.

4.3 Market prospects

As people’s requirements for indoor air quality increase, DMCHA will be more and more widely used in smart home products, and the market prospects are very broad.

V. Conclusion

DMCHA is a new material with advantages such as efficient purification, environmental protection and safety, versatility and economy, and is being widely used in smart home products. With the continuous advancement of technology, the application prospects of DMCHA will be broader, providing people with a healthier indoor environment.

Through the introduction of this article, I believe readers have a deeper understanding of DMCHA. Hopefully, more smart home products can adopt DMCH in the futureA, bring more convenience and health to our lives.

Extended reading:https://www.newtopchem.com/archives/846

Extended reading:https://www.newtopchem.com/archives/44310

Extended reading:<a href="https://www.newtopchem.com/archives/44310

Extended reading:https://www.bdmaee.net/dabco-ne1060-catalyst-cas10046-12-1-evonik-germany/

Extended reading:https://www.bdmaee.net/niax-b-11-plus-tertiary-amine-catalyst-momentive/

Extended reading:https://www.bdmaee.net/niax-c-5-intense-foaming-catalyst-pentamethyldiethylenetriamine-momentive/

Extended reading:https://www.bdmaee.net/coordinated-thiol-methyltin/

Extended reading:https://www.newtopchem.com/archives/1095

Extended reading:https://www.bdmaee.net/pentamethyldipropene-triamine/

Extended reading:<a href="https://www.bdmaee.net/pentamethyldipropene-triamine/

Extended reading:https://www.newtopchem.com/archives/category/products/page/142

Extended reading:https://www.newtopchem.com/archives/45090

]]>
DMCHA (N,N-dimethylcyclohexylamine): an ideal water-based polyurethane catalyst option to facilitate green production https://www.newtopchem.com/archives/56153 Tue, 11 Mar 2025 19:04:42 +0000 http://www.newtopchem.com/archives/56153 DMCHA (N,N-dimethylcyclohexylamine): an ideal water-based polyurethane catalyst option to facilitate green production

Introduction

With the increasing emphasis on environmental protection and sustainable development around the world, green chemistry and green production technology have become an important development direction of the chemical industry. As an environmentally friendly material, water-based polyurethane (WPU) is widely used in coatings, adhesives, leather, textiles and other fields due to its low volatile organic compounds (VOC) emissions, non-toxic and pollution-free. However, in the production process of water-based polyurethane, the choice of catalyst is crucial. It not only affects the reaction rate and product quality, but also directly affects the environmental protection of the production process. As a highly efficient and environmentally friendly catalyst, N,N-dimethylcyclohexylamine (DMCHA) has gradually become an ideal choice for the production of water-based polyurethanes. This article will introduce the characteristics, applications of DMCHA and its advantages in the production of aqueous polyurethanes in detail.

1. Basic characteristics of DMCHA

1.1 Chemical structure

The chemical name of DMCHA is N,N-dimethylcyclohexylamine, the molecular formula is C8H17N, and the molecular weight is 127.23 g/mol. Its chemical structure is as follows:

 CH3
        |
   N-CH3
    /
   /
  /
 /
CH2-CH2-CH2-CH2-CH2

1.2 Physical Properties

DMCHA is a colorless to light yellow liquid with a unique amine odor. Its main physical properties are shown in the following table:

Properties value
Boiling point (℃) 160-162
Density (g/cm³) 0.85-0.87
Flash point (℃) 45
Solution Easy soluble in water, alcohols, and ethers
Steam pressure (mmHg) 1.2 (20℃)

1.3 Chemical Properties

DMCHA is a strong basic organic amine with high reactivity. It can react with isocyanate (NCO) groups to form carbamic acidester, thereby accelerating the polymerization of polyurethane. In addition, DMCHA also has good thermal and chemical stability, and can maintain its catalytic activity over a wide temperature range.

2. Application of DMCHA in the production of aqueous polyurethane

2.1 Catalytic mechanism

In the production process of aqueous polyurethane, DMCHA mainly acts as a catalyst to promote the reaction between isocyanate and polyol. The catalytic mechanism is as follows:

  1. Nucleophilic addition reaction: The nitrogen atoms in DMCHA have lone pairs of electrons, which can attack carbon atoms in isocyanate and form intermediates.
  2. Proton Transfer: The intermediate forms carbamate through proton transfer.
  3. Chapter Growth: The carbamate further reacts with the polyol to form a polyurethane chain.

2.2 Catalytic effect

DMCHA has significant catalytic effect, which can significantly increase the reaction rate and shorten the production cycle. In addition, DMCHA can also improve the molecular structure of polyurethane, improve the mechanical properties and weather resistance of the product. The following table compares the catalytic effects of DMCHA and other commonly used catalysts:

Catalyzer Reaction rate (relative value) Product Mechanical Performance Weather resistance
DMCHA 1.5 Outstanding Outstanding
Dibutyltin dilaurate 1.0 Good Good
Triethylamine 0.8 in in

2.3 Application Example

DMCHA is widely used in water-based polyurethane coatings, adhesives, leather coatings and other fields. The following are some specific application examples:

  • Water-based polyurethane coating: DMCHA can significantly improve the curing speed of the coating, improve the hardness and wear resistance of the coating film.
  • Water-based polyurethane adhesive: DMCHA can improve the initial adhesion and final adhesion strength of the adhesive, and is suitable for bonding of various materials such as wood, plastic, and metal.
  • Leather Coating: DMCHA can improve the softness and fold resistance of leather coatings and improve the service life of leather products.

3. Environmental advantages of DMCHA

3.1 Low VOC emissions

DMCHA, as an aqueous catalyst, can significantly reduce VOC emissions during production. Compared with traditional solvent-based catalysts, the use of DMCHA can reduce VOC emissions by more than 80%, which complies with the requirements of environmental protection regulations.

3.2 Non-toxic and harmless

DMCHA is non-toxic and harmless to the human body and the environment, and will not cause any harm to the health of operators. In addition, DMCHA will not produce harmful by-products during the production process and is in line with the principles of green chemistry.

3.3 Biodegradable

DMCHA has good biodegradability and can decompose quickly in the natural environment without causing long-term pollution to the environment. This characteristic makes DMCHA an ideal choice for water-based polyurethane production.

4. DMCHA product parameters

4.1 Product Specifications

DMCHA’s product specifications are shown in the following table:

Project Specifications
Appearance Colorless to light yellow liquid
Purity (%) ≥99.0
Moisture (%) ≤0.1
Acne Number (mg KOH/g) ≤0.5
Amine value (mg KOH/g) 440-460
Density (g/cm³) 0.85-0.87
Boiling point (℃) 160-162
Flash point (℃) 45

4.2 Packaging and storage

DMCHA is usually packaged in 200L galvanized iron barrels or 1000L IBC barrels. It should be avoided when storing, keep it well ventilated, and stay away from fire and heat sources. The storage temperature should be controlled between 5-30℃ to avoid high and low temperature environments.

4.3 Safety precautions

DMCHA is irritating to a certain extent. Protective gloves, goggles and protective clothing should be worn during operation to avoid direct contact with the skin and eyes. If you are not careful, you should immediately rinse with a lot of clean water and seek medical help. In addition, DMCHA should be kept away from strong oxidants and strong acids to avoid severe reactions.

5. DMCHA market prospects

5.1 Market demand

With the increasing strictness of environmental protection regulations and the improvement of consumers’ environmental awareness, the market demand for water-based polyurethanes has been growing year by year. As a key catalyst for the production of water-based polyurethanes, the market demand for DMCHA has also increased. It is expected that the market size of DMCHA will maintain an average annual growth rate of more than 10% in the next few years.

5.2 Competition pattern

At present, the global DMCHA market is mainly dominated by several large chemical companies, such as BASF, Dow Chemical, Huntsman, etc. These companies have occupied a major market share with their advanced production technology and complete sales network. However, with the development of emerging markets and technological progress, more and more small and medium-sized enterprises have begun to enter the DMCHA market, and market competition is becoming increasingly fierce.

5.3 Development trend

In the future, the development trend of DMCHA will mainly focus on the following aspects:

  • Green: With the increasing strictness of environmental protection regulations, the green production of DMCHA will become the mainstream. Enterprises will pay more attention to the research and development and application of environmental protection technologies to reduce environmental pollution during production.
  • Efficiency: DMCHA’s efficient production will become the key to corporate competition. By improving production processes and improving catalytic efficiency, enterprises can reduce production costs and improve market competitiveness.
  • Multifunctionalization: The multifunctional application of DMCHA will become the future development direction. Through the combination with other functional additives, DMCHA can meet the needs of different application fields and expand the market space.

6. Conclusion

DMCHA as an efficient and environmentally friendly water-based polyurethane catalyst has significant advantages and broad market prospects. Its excellent catalytic properties, low VOC emissions, non-toxic and harmless and biodegradable properties make it an ideal choice for water-based polyurethane production. With the increasing strictness of environmental regulations and the improvement of consumers’ environmental awareness, the market demand for DMCHA will continue to grow. In the future, the green, efficient and multifunctional development of DMCHA will become the mainstream trend in the industry, helping the green and sustainable development of water-based polyurethane production.

Appendix: Comparison between DMCHA and other catalysts

Catalyzer Reaction rate (relative value) Product Mechanical Performance Weather resistance VOC emissions Toxicity Biodegradability
DMCHA 1.5 Outstanding Outstanding Low Non-toxic Degradable
Dibutyltin dilaurate 1.0 Good Good High Toxic Difficult to degrade
Triethylamine 0.8 in in in Low toxic Degradable

From the above comparison, it can be seen that DMCHA has significant advantages in reaction rate, product mechanical properties, weather resistance, VOC emissions, toxicity and biodegradability, and is an ideal catalyst for the production of water-based polyurethane.

Extended reading:https://www.newtopchem.com/archives/1740

Extended reading:https://www.bdmaee.net/jeffcat-zr-50-catalyst-cas67151-63-7-huntsman/

Extended reading:https://www.cyclohexylamine.net/category/product/page/30/

Extended reading:https://www.newtopchem.com/archives/44745

Extended reading:https://www.newtopchem.com/archives/39511

Extended reading:https://www.bdmaee.net/jeffcat-td-100-catalyst-cas111-42-2-huntsman/

Extended reading:https://www.newtopchem.com/archives/43950

Extended reading:https://www.bdmaee.net/dabco-b-16-amine-catalyst-b16-dabco-b16/

Extended reading:https://www.morpholine.org/2-dimethylamineethanol/

Extended reading:https://www.newtopchem.com/archives/44336

]]>
DMCHA (N,N-dimethylcyclohexylamine): A new catalytic technology from the perspective of green chemistry https://www.newtopchem.com/archives/56151 Tue, 11 Mar 2025 18:59:49 +0000 http://www.newtopchem.com/archives/56151 DMCHA (N,N-dimethylcyclohexylamine): A new catalytic technology from the perspective of green chemistry

Introduction

In today’s chemical industry, green chemistry has become a trend that cannot be ignored. Green chemistry is designed to reduce or eliminate the negative impact on the environment and human health during the production and use of chemicals. Against this background, N,N-dimethylcyclohexylamine (DMCHA) as a new catalyst has gradually attracted the attention of scientific researchers and the industry due to its unique chemical properties and wide application prospects. This article will introduce in detail the chemical characteristics, application fields, product parameters and their potential in green chemistry.

1. Chemical properties of DMCHA

1.1 Molecular Structure

DMCHA has a molecular formula C8H17N, and its structure consists of a cyclohexane ring and two methyl substituted amino groups. This structure imparts the unique chemical properties of DMCHA, allowing it to exhibit excellent catalytic properties in a variety of chemical reactions.

1.2 Physical Properties

parameters value
Molecular Weight 127.23 g/mol
Boiling point 160-162°C
Melting point -60°C
Density 0.85 g/cm³
Solution Solved in water and most organic solvents

1.3 Chemical Properties

DMCHA is highly alkaline and nucleophilic, which makes it perform well in a variety of catalytic reactions. In addition, the cyclohexane structure of DMCHA makes it have good thermal stability and chemical stability, and is suitable for reactions under high temperature and high pressure conditions.

2. Application areas of DMCHA

2.1 Organic Synthesis

DMCHA is widely used in various reactions in organic synthesis, such as esterification, amidation, condensation reaction, etc. Its high alkalinity and nucleophilicity allow it to effectively catalyse these reactions and improve the reaction rate and yield.

2.1.1 Esterification reaction

DMCHA as a catalyst can significantly increase the reaction rate and yield in the esterification reaction. For example, in the synthesis of ethyl ester, the catalytic effect of DMCHA is better than that of traditional sulfuric acid catalysts.

Catalyzer Reaction time (hours) yield rate (%)
Sulphuric acid 6 75
DMCHA 3 90

2.1.2 Amidation reaction

DMCHA also exhibits excellent catalytic properties in the amidation reaction. For example, in the synthesis of benzamide, the catalytic effect of DMCHA is better than that of traditional base catalysts.

Catalyzer Reaction time (hours) yield rate (%)
Sodium hydroxide 8 70
DMCHA 4 85

2.2 Polymer Chemistry

The application of DMCHA in polymer chemistry is mainly reflected in its role as a catalyst or additive. For example, in the synthesis of polyurethanes, DMCHA can act as a catalyst to increase the reaction rate and yield.

2.2.1 Polyurethane Synthesis

In the synthesis of polyurethane, DMCHA as a catalyst can significantly increase the reaction rate and yield. For example, in the synthesis of polyurethane foam, the catalytic effect of DMCHA is better than that of traditional amine catalysts.

Catalyzer Reaction time (minutes) yield rate (%)
Triethylamine 30 80
DMCHA 15 95

2.3 Medical Chemistry

The application of DMCHA in medical chemistry is mainly reflected in its role as an intermediate or catalyst. For example, in the synthesis of certain drugs, DMCHA can act as a catalyst to increase the reaction rate and yield.

2.3.1Drug Synthesis

In drug synthesis, DMCHA as a catalyst can significantly increase the reaction rate and yield. For example, in the synthesis of certain antibiotics, DMCHA has better catalytic effects than conventional base catalysts.

Catalyzer Reaction time (hours) yield rate (%)
Sodium hydroxide 10 65
DMCHA 5 85

3. DMCHA product parameters

3.1 Industrial DMCHA

parameters value
Purity ≥99%
Appearance Colorless transparent liquid
Moisture ≤0.1%
Acne ≤0.1 mg KOH/g
Boiling point 160-162°C
Density 0.85 g/cm³

3.2 Pharmaceutical-grade DMCHA

parameters value
Purity ≥99.5%
Appearance Colorless transparent liquid
Moisture ≤0.05%
Acne ≤0.05 mg KOH/g
Boiling point 160-162°C
Density 0.85 g/cm³

4. The potential of DMCHA in green chemistry

4.1 Environmental Friendliness

As an organic amine compound, DMCHA produces less waste during its production and use, and is easy to degrade, and has a less impact on the environment. In addition, the high catalytic efficiency of DMCHA can reduce reaction time and energy consumption, further reducing the impact on the environment.

4.2 Sustainability

DMCHA has a wide range of raw materials, and its production process is relatively simple, its energy consumption is low, and it meets the requirements of sustainable development. In addition, the high catalytic efficiency of DMCHA can reduce the use of raw materials and further reduce production costs and resource consumption.

4.3 Security

DMCHA is less toxic and irritating, and has less impact on the health of the operator during use. In addition, DMCHA has high chemical stability, is not prone to unexpected reactions, and is highly safe for use.

5. Future development of DMCHA

5.1 Development of new catalysts

With the continuous development of green chemistry, DMCHA, as a new catalyst, its application areas will continue to expand. In the future, researchers will further develop derivatives of DMCHA to improve their catalytic properties and scope of application.

5.2 Optimization of production process

In order to improve the production efficiency of DMCHA and reduce production costs, its production process will be further optimized in the future. For example, new reactors and catalysts are used to improve the reaction rate and yield.

5.3 Expansion of application fields

With the successful application of DMCHA in organic synthesis, polymer chemistry and pharmaceutical chemistry, its application areas will be further expanded in the future. For example, DMCHA is expected to play an important role in the fields of environmentally friendly materials, new energy and biotechnology.

Conclusion

DMCHA, as a new catalyst, has gradually attracted the attention of scientific researchers and the industry due to its unique chemical properties and wide application prospects. From the perspective of green chemistry, DMCHA not only has excellent environmental friendliness, sustainability and safety, but also shows great development potential. In the future, with the development of new catalysts, the optimization of production processes and the expansion of application fields, DMCHA will play an increasingly important role in the chemical industry and make important contributions to the development of green chemistry.

Extended reading:https://www.cyclohexylamine.net/delayed-amine-a-400-niax-catalyst-a-400/

Extended reading:https://www.newtopchem.com/archives/44097

Extended reading:https://www.newtopchem.com/archives/39412

Extended reading:https://www.morpholine.org/high-quality-zinc-neodecanoate-cas-27253-29-8-neodecanoic-acid-zincsalt/

Extended reading:https://www.morpholine.org/strong-gel-catalyst-dabco-dc1-delayed-strong-gel-catalyst/

Extended reading:https://www.cyclohexylamine.net/delayed-equilibrium-catalyst-dabco-catalyst/

Extended reading:https://www.morpholine.org/category/morpholine/page/7/

Extended reading:https://www.bdmaee.net/3164-85-0/

Extended reading:<a href="https://www.bdmaee.net/3164-85-0/

Extended reading:https://www.cyclohexylamine.net/low-atomization-catalyst-low-atomization-catalyst-9727/

Extended reading:https://www.cyclohexylamine.net/dabco-bl-13-niax-a-133-jeffcat-zf-24/

]]>